Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠(Yi-Chung Shu)
dc.contributor.authorTi-Ta Hsiehen
dc.contributor.author謝地大zh_TW
dc.date.accessioned2021-06-17T07:00:10Z-
dc.date.available2022-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation[1] P. Basset, D. Galayko, A. M. Paracha, F. Mart, A. Dudka and T. Bourouina. A Batch-Fabricated and Electret-Free Silicon Electrostatic Vibration Energy Harvester. Journal of Michromechanics and Microengineering. 19:115025, 2009.
[2] S. Cheng and D. P. Arnold. A Study of a Multi-Pole Magnetic Generator for Low-Frequency Vibrational Energy Harvesting. Journal of Michromechanics and Microengineering, 20:025015, 2010.
[3] L. Zuo, B. Scully, J. Shestani and Y. Zhou. Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions. Smart Materials and Structures, 19:045003, 2010.
[4] Aboulfotoh, N. and Twiefel, J. A Study on Important Issues for Estimating the Estimating the Effectiveness of the Proposed Piezoelectric Energy Harvesters under Volume Constraints. Applied Sciences, 8: 75, 2018.
[5] K. Wolf, B. Stoeber and T. Sattel. The Dynamic Coupling and Power Flow in Asymmetric Piezoelectric Bending Actuators. Smart Materials and Structures, 16:2015-2025, 2007.
[6] Y. T. Huang, W. J. Wu, Y. Y. Chen and C. K. Lee. A Model Actuator-Based Single-Layer Piezoelectric Transformer for Coilless Soft Switching Inverters. Smart Materials and Structure, 16:2046-2055, 2007.
[7] F. Amoroso, R. Pecora, M. Ciminello and A. Concilio. An Original Device for Bogie Energy Harvesting: A Real Application Scenario. Smart Structures and Systems, 16:383-399, 2015.
[8] D. Castagnetti. Experimental Model Analysis of Fractal-Inspired Multi-Frequency Structures for Piezoelectric Energy Converters. Smart Materials and Structures, 21:094009, 2012.
[9] A. Erturk, J. M. Renno and D. J. Inman. Modeling of Piezoelectric Energy Harvesting from an LShaped Beam-Mass Structure with an Application to UAVs. Journal of Intelligent Material Systems and Structures, 20:529-544, 2009.
[10] M. A. Karami and D. J. Inman. Parametric Study of Zigzag Microstructure or Vibrational Energy Harvesting. Journal of Microelectromechanical Systems, 21:145-160, 2012.
[11] J. Lee, J. Oh, H. Kim and B. Choi. Strain-Based Piezoelectric Energy Harvesting for Wireless Sensor Systems in a Tire. Journal of Intelligent Material Systems and Structures, 26:1404-1416, 2015.
[12] Q. Ou, X. Chen, S. Gutschmidt, A. Wood, N. Leigh and A. F. Arrieta. An Experimentally Validated Double-Mass Piezoelectric CantileverModel for Broadband Vibration-Based Energy Harvesting. Journal of Intelligent Material Systems and Structures, 23:117-126, 2012.
[13] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V. Sundararajan. Improving Power Output for Vibration-Based Energy Scavengers. IEEE Pervasive Computing, 4:28-36, 2005.
[14] H. Wu, L. Tang, Y. Yang and C. K. Soh. A Novel Two-Degrees-of-Freedom Piezoelectric Energy Harvester. Journal of Intelligent Material Systems and Structures, 24:357-368, 2013.
[15] S. Roundy and J. Tola. Energy Harvester for Rotating Environments using Offset Pendulum and Nonlinear Dynamics. Smart Materials and Structures, 23:105004, 2014.
[16] 王偉丞,「旋轉式週期性磁力應用於壓電振能擷取之研究」,台灣大學應用力學所碩士論文,2017。
[17] 張永邦,「開發旋轉磁激振外力於陣列式壓電能量擷取之研究」,台灣大學應用力學所碩士論文,2018。
[18] 陳璽安,「旋轉環境下壓電能量擷取系統之研究」,台灣大學應用力學所碩士論文,2018。
[19] E. E. Aktakka and K. Najafi. A Micro Inertial Energy Harvesting Platform with Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes. IEEE Journal of Solid-State Circuits, 49:2017-2029, 2014.
[20] Q. Deng and S. Shen. The Flexodynamic Effect on Nanoscale Flexoelectric Energy Harvesting: a Computational Approach. Smart Materials and Structures, 27:105001, 2018.
[21] Y. B. Jeon, R. Sood, J. H. Jeong and S. G. Kim. MEMS Power Generator with Transverse Mode Thin Film PZT. Sensors and Actuators A, 122:16-22, 2005.
[22] S. C. Lin and W. J. Wu. Piezoelectric Micro Energy Harvesters Based on Stainless-Steel Substrate. Smart Materials and Structures, 22:045016, 2013.
[23] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. L in. Revisit of Series-SSHI with Comparisons to Other Interfacing Circuits in Piezoelectric Energy Harvesting. Smart Materials and Structures, 19:125009, 2010.
[24] N. Aboulfotoh and J. Twiefel. A Study on Important Issues for Estimating the Effectiveness of the Proposed Piezoelectric Energy Harvesters under Volume Constraints. Applied Sciences, 8:75, 2018.
[25] B. Bayik, A. Aghakhani, I. Basdogan, and A. Erturk. Equivalent Circuit Modeling of a Piezo-Patch Energy Harvester on a Thin Plate with AC-DC Conversion. Smart Materials and Structures, 25:055015, 2016.
[26] A. Bibo and M. F. Daqaq. Energy Harvesting under Combined Aerodynamic and Base Excitations. Journal of Sound and Vibration, 332:5086-5102, 2013.
[27] M. W. Shafer, R. MacCurdy, J. R. Shipley, D. Winkler, C. G. Guglielmo and E. Garcia. The Case for Energy Harvesting on Wildlife in Flight. Smart Materials and Structures, 24:025031, 2015.
[28] Y. C. Shu and I. C. Lien. Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System. Journal of Micromechanics and Microengineering, 16:2429-2438, 2006.
[29] L. Zhao and Y. Yang. Analytical Solutions for Galloping-Based Piezoelectric Energy Harvesters with Various Interfacing Circuits. Smart Materials and Structures, 24:075023, 2015.
[30] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005.
[31] Y. C. Shu, I. C. Lien and W. J. Wu. An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting. Smart Materials and Structures, 16:2253-2264, 2007.
[32] S. R. Anton, K. M. Farinholt and A. Erturk. Piezoelectret Foam-Based Vibration Energy Harvesting. Journal of Intelligent Material Systems and Structures, 25:1681-1692, 2014.
[33] M. S. S. Bafqi, R. Bagherzadeh and M. Latifi. Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency. Journal of Polymer Research, 22:130, 2015.
[34] S. Shahab, S. Zhao and A. Erturk. Soft and Hard Piezoelectric Ceramics and Single Crystals for Random Vibration Energy Harvesting. Energy Technology, 6:935-942, 2018.
[35] T. A. and G. Gerlach. A Survey on Piezoelectric Ceramics for Generator Applications. Journal of the American Ceramic Society, 93:901-912, 2010.
[36] C. de Marqui Jr, A. Erturk and D. J. Inman. An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates. Journal of Sound and Vibration, 327:9-25, 2009.
[37] N. G. Elvin and A. A. Elvin. A Coupled Finite Element Circuit Simulation Model for Analyzing Piezoelectric Energy Generators. Journal of Intelligent Material Systems and Structures, 20:587-595, 2009.
[38] M. F. Lumentut and I. M. Howard. Electromechanical Finite Element Modelling for Dynamic Analysis of a Cantilevered Piezoelectric Energy Harvester with Tip Mass Offset under Base Excitations. Smart Materials and Structures, 23:095037, 2014.
[39] M. F. Lumentut and Y. C. Shu. A Unified Electromechanical Finite Element Dynamic Analysis of Multiple Segmented Smart Plate Energy Harvesters: Circuit Connection Patterns. Acta Mech, 229:4575-4604, 2018.
[40] M. Zhu, E. Worthngton and J. Njuguna. Analyses of Power Output of Piezoelectric Energy-Harvesting Devices Directly Connected to a Load Resistor Using a Coupled Piezoelectric-Circuit Finite Element Method. IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control, 56:1309-1318, 2009.
[41] P. H. Wu and Y. C. Shu. Finite Element Modeling of Electrically Rectified Piezoelectric Energy Harvesters. Smart Material and Structures, 24:094008, 2015.
[42] A. Frey, J. Seidel and I. Kuehne. System Design of a Piezoelectric MEMS Energy Harvesting Module Based on Pulsed Mechanical Excitation. In Proc. of PowerMEMS, Leuven, 2010.
[43] N. Makki and R. Pop-Iliev. Battery-and Wire-less Tire Pressure Measurement Systems(TPMS) Sensor. Microsystem Technologies, 18:1201-1212, 2012.
[44] 黃育熙,「旋轉機構之機電整合量測轉速並應用於壓電發電元件之製作與實測」,台灣科技大學機械工程學系實務專題報告,2016。
[45] 傅泳馨,「微型壓電元件應用於寬頻旋轉系統之研究」,台灣大學工程科學及海洋工程學系研究所碩士論文,2018。
[46] H. Fu and E. M. Yeatman. A Miniaturized Piezoelectric Turbine with Self-Regulation for Increased Air Speed Range. Applied Physics Letters, 107:243905, 2015.
[47] M. V. V. de Araujo and R. Nicoletti. Electromagnetic Harvester for Lateral Vibration in Rotating Machines. Mechanical Systems and Signal Processing, 52-53:685-699, 2015.
[48] H. Kim, W. C. Tai, S. Zhou and L. Zuo. Stochastic Resonance Energy Harvesting for a Rotating Shaft Subject to Random and Periodic Vibrations: Influence of Potential Function Asymmetry and Frequency Sweep. Smart Materials and Structures, 26:115011, 2017.
[49] F. Qian, W. Zhou, S. Kaluvan, H. Zhang and L. Zuo. Theoretical Modeling and Experimental Validation of a Torsional Piezoelectric Vibration Energy Harvesting System. Smart Materials and Structures, 27:045018, 2018.
[50] H. Fu and E. M. Yeatman. A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion. Energy, 125:152-161, 2017.
[51] Y. C. Shu, W. C. Wang and Y. P. Pang. Electrically Rectified Piezoelectric Energy Harvesting Induced by Rotary Magnetic Plucking. Smart Materials and Structures, 27:125006, 2018.
[52] S. Putter and H. Manor. Natural Frequencies of Radial Rotating Beams. Journal of Sound and Vibration, 56:175-185, 1978.
[53] S. V. Hoa. Vibration of a Rotating Beam with Tip Mass. Journal of Sound and Vibration, 67:369-381, 1979.
[54] A. Yigit, R. A. Scot and A. G. Ulsoy. Flexual Motion of a Radially Rotating Beam Attached to a Rigid Body. Journal of Sound and Vibration, 121:201-210, 1988.
[55] L. Gu and C. Livermore. Passive Self-Tuning Energy Harvester for Extracting Energy from Rotational Motion. Applied Physics Letters, 97:081904, 2010.
[56] L. Gu and C. Livermore. Compact Passively Self-Tuning Energy Harvesting for Rotating Applications. Smart Materials and Structures, 21:015002, 2012.
[57] J. C. Hsu, C. T. Tseng and Y. S. Chen. Analysis and Experiment of Self-Frequency-Tuning Piezoelectric Energy Harvesters for Rotational Motion. Smart Materials and Structures, 23:075013, 2014.
[58] Y. J. Wang, T. Y. Chuang and J. H. Yu. Design and Kinetic Analysis of Piezoelectric Energy Harvesters with Self-Adjusting Resonant Frequency. Smart Materials and Structures, 26:095037, 2017.
[59] M. Guan and W. H. Liao. Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System. Energy Conversion and Management, 111:239-244, 2016.
[60] T. T. Hsieh, S. A. Chen and Y. C. Shu. Investigation of Various Cantilever Configurations for Piezoelectric Energy Harvesting under Rotational Motion. Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, 10967, 2019.
[61] W. H. Liao, D. H. Wang and S. L. Huang. Wireless Monitoring of Cable Tension of Cable-Stayed Bridge Using PVDF Piezoelectric Films. Journal of Intelligent Material Systems and Structures, 12:331-339, 2001.
[62] Y. Qin, X. Wang and Z. L. Wang. Microfibre-Nonawire Hybird Structure for Energy Scavenging. Nature, 451:809-814, 2008.
[63] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen and Z. L. Wang. Piezoelectric Nanogenerator Using P-Type Zno Nanowire Arrays. Nano Letters, 9:1223-1227, 2009.
[64] X. H. Xu and J. R. Chu. Preparation of a High Quality PZT Thick Film with Performance Comparable to Those of Bulk Materials for Applications in MEMS. Journal of Michromechanics and Microengineering, 18:065001, 2008.
[65] Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 15:1499-1512, 2006.
[66] A. Erturk and D. J. Inman. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acoustics, 130:041002-1, 2008.
[67] A. Erturk and D. J. Inman. An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations. Smart Materials and Structures, 18:025009, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72513-
dc.description.abstract本研究為探討實驗上兩種不同安裝方式的壓電懸臂樑,在旋轉環境中所展現的獵能效果。而其中的壓電振子模型分別為壓電懸臂樑安裝自由端朝離圓心模型(朝外模型),以及壓電懸臂樑安裝自由端朝向圓心模型(朝內模型)。理論方面基本上為使用Hamiltonian principle 配合著distributed parameter method,來得出兩種不同安裝型態下的解析解。在此研究中有許多成果,首先在朝外模型會因離心力作用方向與壓電懸臂樑伸長方向相同而使其勁度上升。最終使得壓電振子的共振頻調變斜率為正斜率,擁有能使共振頻與外界轉速一致的潛力。另一方面,朝內模型會因離心力作用方向與壓電懸臂樑壓縮方向相同而使勁度下降,因此能夠提高壓電振子的功率輸出,但取而代之的是失去了寬頻的能力。而本研究的除了將執行實驗來與理論比較外,也探討了在實驗上改變附加質量塊(Mt)或改變壓電懸臂樑固定端到旋轉圓心距離(r0),其對實驗輸出結果的影響。最終發現增加附加質量塊(Mt)將會提升壓電振子的功率輸出。以及,隨著懸臂樑固定端到旋轉圓心距離(r0)增加,能夠提升功率輸出的頻寬。zh_TW
dc.description.abstractThe thesis presents an experimental investigation of two cantilever configurations for harvesting energy from rotational motion. A piezoelectric cantilever beam is mounted radially on a rotating body with either an outward or inward configuration. A unified approach based on the Hamiltonian principle and the distributed parameter method is employed to analyze these two different cases. There are several observations. First, the centrifugal force in the outward configuration of a rotatory harvester beam effectively stiffens the beam. As a result, the slope of resonance against driving frequency is positive, showing the potential of tracking and matching the driving frequency. On the other hand, the inward configuration leads to the softening of stiffness, giving rise to the enhancement of power at the cost of the loss of tuning ability. Both theoretical predictions are observed in the proposed experiment. Finally, the effect of tip mass and the distance between the fixed end and the center on the harvesting capability are studied for performance evaluation. It is found power increases as the increase of the tip mass. In addition, the overall bandwidth is enlarged for increasing the distance of the fixed end to the center of radius.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:10Z (GMT). No. of bitstreams: 1
ntu-108-R06543022-1.pdf: 4554526 bytes, checksum: 4ae6bc5c32cd74bddf51fdc720865d15 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 ...........................................................................................................#
誌謝 ...................................................................................................................................i
中文摘要.......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
目錄.................................................................................................................................iv
圖目錄..............................................................................................................................vi
Chapter 1 緒論............................................................................................................1
1.1 研究動機........................................................................................................1
1.2 文獻回顧........................................................................................................3
1.3 論文架構........................................................................................................9
Chapter 2 基本壓電懸臂樑模型.............................................................................10
2.1 壓電效應......................................................................................................10
2.2 線彈性壓電材料之組成律..........................................................................12
2.3 單軸往復式懸臂樑壓電振子之標準直流電路理論..................................14
2.4 Hamiltonian Principle...................................................................................18
2.4.1 Hamiltonian Principle 應用於壓電材料中.......................................19
Chapter 3 旋轉環境下壓電懸臂樑之數學模型.....................................................21
3.1 壓電片安裝朝外模型..................................................................................21
3.1.1 Distributed Parameter Method ............................................................27
3.1.2 Rayleigh-Ritz Method.........................................................................30
3.2 壓電片安裝朝內模型..................................................................................31
3.2.1 Distributed Parameter Method ............................................................34
Chapter 4 壓電振子參數理論分析.........................................................................35
4.1 實驗要求與限制..........................................................................................35
4.2 安裝不同附加質量塊重量( M t )影響.........................................................37
4.3 不同固定端與圓心距離( r 0 )影響...............................................................41
4.4 Distributed Parameter 和Rayleigh-Ritz method 比較................................44
Chapter 5 實驗執行..................................................................................................45
5.1 實驗儀器......................................................................................................46
5.1.1 單軸往復式振動、旋轉共同儀器.....................................................47
5.1.2 旋轉實驗儀器.....................................................................................48
5.1.3 單軸往復式振動實驗儀器.................................................................49
5.1.4 附加質量塊(Mt)安裝........................................................................51
5.2 實驗流程......................................................................................................52
5.3 實驗結果與討論..........................................................................................57
5.3.1 壓電片朝外模型之理論驗證.............................................................57
5.3.2 DC 輸出消耗討論..............................................................................60
5.3.3 壓電振子朝外模型之改變r0 .............................................................65
5.3.4 壓電振子朝外實驗改變Mt ...............................................................67
5.3.5 壓電片朝內模型之理論驗證.............................................................69
5.3.6 旋轉實驗及單軸往復式振動實驗比較.............................................71
Chapter 6 結論與未來展望.....................................................................................74
6.1 結論..............................................................................................................74
6.2 未來展望......................................................................................................78
REFERENCE ..................................................................................................................80
dc.language.isozh-TW
dc.title以實驗探討壓電轉子在兩種不同型態下之能量擷取研究zh_TW
dc.titleExperimental study of harvesting energy from a rotary
piezoelectric oscillator under two different configurations
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育熙,林哲宇
dc.subject.keyword壓電能量擷取系統,旋轉環境,被動調頻,離心力,不同模組安裝方式,zh_TW
dc.subject.keywordPiezoelectric vibration energy harvesting system,Rotational motion,Passive self-tuning,Centrifugal force,Different configurations,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201902371
dc.rights.note有償授權
dc.date.accepted2019-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved