請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞 | |
| dc.contributor.author | Chen Shu Ting | en |
| dc.contributor.author | 陳書亭 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:04Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2019-08-26 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-03 | |
| dc.identifier.citation | 1. Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89.
2. Foris, L. and J. Snowden, Proteus Mirabilis Infections, in StatPearls. 2017, StatPearls Publishing StatPearls Publishing LLC.: Treasure Island (FL). 3. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum, 2015. 3(5): p. 10.1128/microbiolspec.UTI-0017-2013. 4. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 5. Tsai, Y.L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Sci Rep, 2017. 7(1): p. 7282. 6. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 7. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 8. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 9. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 10. Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003. 57: p. 249-73. 11. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 12. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 13. Alahari, A. and S.K. Apte, Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Microbiology, 1998. 144 ( Pt 6): p. 1557-63. 14. Csonka, L.N. and A.D. Hanson, Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol, 1991. 45: p. 569-606. 15. Liu, Y., et al., Potassium transport of Salmonella is important for type III secretion and pathogenesis. Microbiology, 2013. 159(Pt 8): p. 1705-19. 16. Wieczorek, L. and K. Altendorf, Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5'-triphosphatase. FEBS Lett, 1979. 98(2): p. 233-6. 17. Altendorf, K., P. Voelkner, and W. Puppe, The sensor kinase KdpD and the response regulator KdpE control expression of the kdpFABC operon in Escherichia coli. Res Microbiol, 1994. 145(5-6): p. 374-81. 18. Stock, A.M., V.L. Robinson, and P.N. Goudreau, Two-component signal transduction. Annu Rev Biochem, 2000. 69: p. 183-215. 19. Mascher, T., J.D. Helmann, and G. Unden, Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 910-38. 20. Jung, K., B. Tjaden, and K. Altendorf, Purification, Reconstitution, and Characterization of KdpD, the Turgor Sensor ofEscherichia coli. Journal of Biological Chemistry, 1997. 272(16): p. 10847-10852. 21. Geer, L.Y., et al., CDART: protein homology by domain architecture. Genome Res, 2002. 12(10): p. 1619-23. 22. Voelkner, P., W. Puppe, and K. Altendorf, Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli. Eur J Biochem, 1993. 217(3): p. 1019-26. 23. Mork-Morkenstein, M., et al., Non-canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Mol Microbiol, 2017. 106(1): p. 54-73. 24. Heermann, R. and K. Jung, The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett, 2010. 304(2): p. 97-106. 25. Gannoun-Zaki, L., et al., Overexpression of the Salmonella KdpF membrane peptide modulates expression of kdp genes and intramacrophage growth. FEMS Microbiol Lett, 2014. 359(1): p. 34-41. 26. Ali, M.K., et al., Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis. Front Microbiol, 2017. 8: p. 570. 27. O'Loughlin, J.L., et al., Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun, 2010. 78(2): p. 773-82. 28. Alegado, R.A., et al., The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol, 2011. 13(10): p. 1618-37. 29. Njoroge, J.W., et al., Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. MBio, 2012. 3(5): p. e00280-12. 30. Paul, R., et al., Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell, 2008. 133(3): p. 452-61. 31. Gustavsson, N., A. Diez, and T. Nystrom, The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol, 2002. 43(1): p. 107-17. 32. Heermann, R., et al., The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress. J Mol Biol, 2009. 386(1): p. 134-48. 33. Luttmann, D., et al., Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol, 2009. 72(4): p. 978-94. 34. Deutscher, J., C. Francke, and P.W. Postma, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev, 2006. 70(4): p. 939-1031. 35. Hobbs, E.C., et al., An expanding universe of small proteins. Curr Opin Microbiol, 2011. 14(2): p. 167-73. 36. Gannoun-Zaki, L., et al., Overexpression of the KdpF membrane peptide in Mycobacterium bovis BCG results in reduced intramacrophage growth and altered cording morphology. PLoS One, 2013. 8(4): p. e60379. 37. Jung, K. and K. Altendorf, Truncation of Amino Acids 12–128 Causes Deregulation of the Phosphatase Activity of the Sensor Kinase KdpD ofEscherichia coli. Journal of Biological Chemistry, 1998. 273(28): p. 17406-17410. 38. Epstein, W. and M. Davies, Potassium-dependant mutants of Escherichia coli K-12. J Bacteriol, 1970. 101(3): p. 836-43. 39. de Lorenzo, V., et al., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol, 1990. 172(11): p. 6568-72. 40. Wu, J., et al., Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol, 2014. 80(14): p. 4108-13. 41. Konieczna, I., et al., Bacterial Urease and its Role in Long-Lasting Human Diseases. Current Protein and Peptide Science, 2012. 13(8): p. 789-806. 42. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 43. Jiang, S.S., et al., Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother, 2010. 54(5): p. 2000-9. 44. Buurman, E.T., et al., Multiple paths for nonphysiological transport of K+ in Escherichia coli. J Bacteriol, 2004. 186(13): p. 4238-45. 45. Su, J., et al., The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun, 2009. 77(2): p. 667-75. 46. de Oliveira, M.V., et al., Essential role of K(+) uptake permease (Kup) for resistance to sucrose-induced stress in Gluconacetobacter diazotrophicus PAl 5. Environ Microbiol Rep, 2017. 9(2): p. 85-90. 47. Butler, R.E., V. Cihlarova, and G.R. Stewart, Effective generation of reactive oxygen species in the mycobacterial phagosome requires K+ efflux from the bacterium. Cell Microbiol, 2010. 12(8): p. 1186-93. 48. Schramke, H., et al., Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. Microbiologyopen, 2017. 6(3). 49. Iwadate, Y. and J.I. Kato, Involvement of the ytfK gene from the PhoB regulon in stationary-phase H2O2 stress tolerance in Escherichia coli. Microbiology, 2017. 163(12): p. 1912-1923. 50. Hughes, D.T., et al., The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog, 2009. 5(8): p. e1000553. 51. Xue, T., et al., The Staphylococcus aureus KdpDE two-component system couples extracellular K+ sensing and Agr signaling to infection programming. Infect Immun, 2011. 79(6): p. 2154-67. 52. Deuschle, M., et al., Interplay of the PtsN (EIIA(Ntr)) protein of Pseudomonas putida with its target sensor kinase KdpD. Environ Microbiol Rep, 2015. 7(6): p. 899-907. 53. Prell, J., et al., The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol Microbiol, 2012. 84(1): p. 117-29. 54. Karstens, K., et al., Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. Microbiology, 2014. 160(Pt 4): p. 711-22. 55. Rosas Olvera, M., et al., Endogenous and Exogenous KdpF Peptide Increases Susceptibility of Mycobacterium bovis BCG to Nitrosative Stress and Reduces Intramacrophage Replication. Front Cell Infect Microbiol, 2017. 7: p. 115. 56. Heermann, R., M.L. Lippert, and K. Jung, Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. BMC Microbiol, 2009. 9: p. 133. 57. Nakashima, K., et al., Signal transduction between the two regulatory components involved in the regulation of the kdpABC operon in Escherichia coli: phosphorylation-dependent functioning of the positive regulator, KdpE. Mol Microbiol, 1993. 7(1): p. 109-16. 58. Lopez, C., S.K. Checa, and F.C. Soncini, CpxR/CpxA Controls scsABCD Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. J Bacteriol, 2018. 200(16). 59. Pennacchietti, E., et al., The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria. Front Microbiol, 2018. 9: p. 2869. 60. Freeman, Z.N., S. Dorus, and N.R. Waterfield, The KdpD/KdpE two-component system: integrating K(+) homeostasis and virulence. PLoS Pathog, 2013. 9(3): p. e1003201. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72507 | - |
| dc.description.abstract | Proteus mirabilis為革蘭氏陰性兼性厭氧菌,為重要的泌尿道病原菌,主要在長期植入尿導管的病人,以及免疫功能低下的病患中造成伺機性感染。鉀離子 (K+) 對於細菌維持生理功能以及細菌毒力與致病力皆占有重要的角色,已有研究顯示,在Salmonella中,當鉀離子transporter缺失,會造成分泌蛋白的減少以及降低對上皮細胞的侵入能力。KdpDE雙組成系統是細菌中很廣泛存在的histidine kinase/response regulator系統,當環境中可利用的K+濃度受到限制時,KdpD會進行自我磷酸化並轉移磷酸根到胞內的KdpE,而磷酸化的KdpE會誘發KdpFABC K+ transporter表現,而當環境中K+濃度變高時,會抑制KdpDE訊息傳遞,抑制KdpFABC的表現,藉此幫助調節胞內K+的濃度。已有許多研究顯示,kdpDE對於細菌致病力是很重要的,例如Yersinia pestis的kdpDE突變株比起野生株在嗜中性球存活率較低。另外在Salmonella Typhimurium中,kdpD突變導致感染線蟲的能力以及在巨噬細胞中的存活率降低,也影響在高鹽以及hydrogen peroxide (H2O2)環境中的存活率。綜觀鉀離子對細菌的重要性,而KdpDE會調控KdpFABC鉀離子攝取系統,因此本文的目的欲探討KdpDE 在P. mirabilis的角色及其調控。
我們搜尋P. mirabilis N2 genome上的kdpFABCDE,發現其胺基酸與E. coli 、S. Typhimurium之相似度皆在60%以上。首先以reporter assay確認了低鉀環境下可以誘發kdpF promoter的活性,高鉀則會抑制。因而以低鉀的環境下分析kdp operon,結果顯示kdpFABCDE為同一個operon。之後構築kdpE突變株,分析野生株、kdpE突變株、kdpE互補株與kdpE過度表現株之表現型,發現突變株與野生株並無差異,然而,過度表現株在表面移行能力、抗酸能力、抗H2O2與抗高鹽能力上,都優於野生株。接著reporter assay顯示野生株在LB時與kdpE突變株同樣不會誘發kdpF promoter的活性而kdpE過度表現株則會誘發kdpF promoter的高活性。於是找尋可以誘發野生株kdpF promoter活性之因子,發現野生株在低鉀、高鈉、H2O2、酸及高糖的環境下皆可活化kdpF 的promoter活性,kdpE突變株則否,顯示在這些壓力下可活化KdpDE訊息傳遞。接著,以高鈉或低鉀活化KdpDE訊息傳遞之環境下分析kdpE突變株與野生株的表現型,結果顯示在抗鹽、抗氧化壓力與抗酸能力上野生株優於突變株。另外,發現kdpE磷酸化位點突變仍然可以活化kdpF promoter,但磷酸化的KdpE比非磷酸化的KdpE調控的能力更強。也觀察到kdpD突變株不管在表現型或是對於kdpFABC operon的調控上,結果皆與kdpE突變株一致,暗示在低鉀或高鉀環境下並不會有別條路徑透過KdpE去調控kdpF promoter。最後我們也探討KdpDE accessory proteins對KdpDE訊息傳遞之影響,發現PtsN與KdpF蛋白質過度表現皆會抑制kdpF promoter活性,且Bacterial-two hybrid assay顯示PtsN與KdpD之間有交互作用。 總之KdpDE會正向調控kdpFABC表現,非磷酸化的KdpE還是可以活化kdpF promoter,低鉀、高鈉、H2O2、酸及高糖都是KdpDE雙組成系統的訊號,低鉀、高鈉可以誘發下游基因保護細菌免於氧化壓力、酸性以及高鹽環境的傷害。 | zh_TW |
| dc.description.abstract | Proteus mirabilis with the swarming characteristic often causes urinary tract infections occurring mainly in patients with the long-term implantation of urinary catheters. According to previous study, potassium plays an important role in maintaining the function, pathogenicity and toxicity of bacteria. The lack of potassium transporters results in the decrease of secretion proteins and the invasion toward epilethial cells of Salmonella. KdpDE two-component system is a wildly expressed kinase/response regulator in bacteria. Intracellular KdpE is phosphorylated by KdpD when encountering a decreased concentration of potassium, which enhances the expression of KdpFABC potassium transporter. On the other hand, the increased concentration of potassium inhibits KdpE signal then decreased the expression level of KdpFABC to regulate the intracellular concentration of potassium. It has been proven that KdpDE is crucial to the pathogenicity of bacteria such as Yersinia pestis kdpDE mutant is with lower survival than wild type, Salmonella Typhimurium kdpDE mutant leads to a lower infectious rate to nematode and lower survival rate in marcophages as well as in high salinity condition. KdpDE regulates the KdpFABC and influences the uptake of potassium. The aim of this research is to investigate the gene regulation and function of the KdpDE two-component system in uropathogenic Proteus mirabilis.
We discovered that kdpFABCDE in N2 genome of P. mirabilis is with 60% similarity with E.coli and S. Typhimurium. The kdpF promoter activity showed the same expression pattern as E.coli and S. Typhimurium in response to the potassium concentration. We proved kdpFABCDE can be a transcriptional unit under low potassium. Subsequently the phenotype of kdpE mutant, wild type, kdpE complementation and kdpE overexpression were analyzed. The tolerance to acid, H2O2 and high salt of the kdpE overexpression strain but not mutant was significantly better than the wild type. We showed kdpF promoter activity was almost no expression in both wild type and mutant in LB, instead of being highly induced in the kdpE overexpression strain. We then identified low K+, high Na+, H202, H+, or glucose as signal to trigger expression of kdpFABC through the kdpDE signal transduction pathway. Under high Na+and low K+ concentration, the salt-resistant, acid-resistant and anti-oxidation ability of wild type are significantly better than of mutant. We also demonstrated un phosphorylated KdpE still can induce kdpF expression in a less extent. Besides, kdpD mutant had no difference with kdpE mutant in terms of the phenotypes and the regulation of kdpFABC operon, suggesting kdpF promoter is solely regulated by kdpDE pathway under the condition used low K+, high Na+ condition. Moreover, overexpression of PtsN inhibited the activity of kdpF promoter and bacterial two-hybrid assay showed interaction between KdpD and PtsN. In summary, KdpDE regulated the expression of kdpFABC no matter KdpE is phosphorylated or not. Low K+, high Na+, high H+, and high H2O2 are signals of the KdpDE two component system. Low K+or high Na+ induces expression downstream gene of the KdpDE system to protect bacteria from the damages of H2O2 stresss, high saltanity and highly acidic condition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:04Z (GMT). No. of bitstreams: 1 ntu-108-R05424017-1.pdf: 5045834 bytes, checksum: fa10931d0d415a19342ab57f871df9e7 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II 目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis) 的基本介紹 1 第二節 P.mirabilis的致病因子及表面移行能力 1 第三節 鉀離子transporter、KdpDE雙組成系統與細菌的關係 4 第四節 kdp operon之相關基因調控 6 第五節 研究動機與目的 7 第二章 實驗材料與方法 8 第一節 實驗設計 8 第二節 實驗材料 9 第三節 構築突變株、互補株、過度表現與定點突變菌株 11 第四節 分生技術 16 第五節 分析表現型 (phenotype) 及毒力因子 (virulence factors) 28 第六節 基因表達 35 第三章 實驗結果 39 第一節 kdp基因的基本特徵分析 39 第二節 P. mirabilis kdpE突變株之建立與確認 44 第三節 kdpE突變株及kdpE過度表現之表現型分析 47 第四節 kdp operon transcription之調控 55 第五節 kdpE突變株在誘發環境下分析表現型 60 第六節 探討kdpE磷酸化對於KdpDE調控kdpFABC operon之影響 66 第七節 P. mirabilis kdpD突變株之建立與確認 68 第八節 比較kdpD突變株與kdpE突變株之表現型以及調控之影響 71 第九節 KdpD與其他accessory proteins之交互作用及調控 74 第四章 結論與討論 78 第一節 結論 78 第二節 討論 79 第三節 未來展望 83 第五章 表 84 參考文獻 89 附錄 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | Proteus mirabilis | zh_TW |
| dc.subject | KdpDE雙組成系統 | zh_TW |
| dc.subject | 鉀離子 | zh_TW |
| dc.subject | kdpFABC | zh_TW |
| dc.subject | 鈉離子 | zh_TW |
| dc.subject | kdpFABC | en |
| dc.subject | KdpDE two component system | en |
| dc.subject | Proteus mirabilis | en |
| dc.subject | potassium | en |
| dc.subject | sodium | en |
| dc.title | 尿道致病性奇異變形桿菌KdpDE雙組成調控系統之基因調控暨功能分析研究 | zh_TW |
| dc.title | Gene regulation and function analysis of the KdpDE two-component system in uropathogenic Proteus mirabilis. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊翠青,胡小婷,鄧麗珍 | |
| dc.subject.keyword | Proteus mirabilis,KdpDE雙組成系統,鉀離子,kdpFABC,鈉離子, | zh_TW |
| dc.subject.keyword | Proteus mirabilis,KdpDE two component system,potassium,kdpFABC,sodium, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU201901907 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
