Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorYen-Ching Wuen
dc.contributor.author吳彥慶zh_TW
dc.date.accessioned2021-06-17T07:00:01Z-
dc.date.available2022-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation[1] Senkov, O.N., et al. 'Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. 'Acta Materialia, , vol. 61, no. 5, pp. 1545-1557,2013.
[2] N. Stepanov, D. Shaysultanov, G. Salishchev, and Tikhonovsky, 'Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy,' Materials Letters, vol. 142, pp. 153-155, 2015.
[3] J. W. Yeh et al., 'Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,' Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, 2004.
[4] J. W. Yeh, ' Recent progress in high-entropy alloys.' Annales de Chimie. Science des Materiaux (Paris), vol. 31, no. 6, pp. 633-648, 2006.
[5] Ranganathan, 'Alloyed pleasures: multimetallic cocktails,' Current Science, vol. 85, no. 5, pp. 1404-1406, 2003.
[6] J. Behler, 'Atom-centered symmetry functions for constructing high-dimensional neural network potentials,' The Journal of Chemical Physics, vol. 134, no. 7, p. 074106, 2011.
[7] A. Khorshidi and A. A. Peterson, 'Amp: A modular approach to machine learning in atomistic simulations,' Computer Physics Communications, vol. 207, pp. 310-324, 2016.
[8] W. Huo, F. Fang, H. Zhou, Z. Xie, J. Shang, and J. Jiang, 'Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures,' Scripta Materialia, vol. 141, pp. 125-128, 2017.
[9] LI, Zhiming, et al. 'Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off.' Nature, vol. 534, no. 7606, pp.227, 2016.
[10] Y.-J. Hsu, W.-C. Chiang, and J.-K. Wu, 'Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution,' Materials Chemistry Physics, vol. 92, no. 1, pp. 112-117, 2005.
[11] P. Hohenberg and W. Kohn, 'Density Functional Theory (DFT),' Physical Review, vol. 136, p. B864, 1964
[12] M. Born and J. R. Oppenheimer, 'On the quantum theory of molecules,' Ann. Physik, pp. 457-484, 1927.
[13] L. H. Thomas, 'The calculation of atomic fields,' in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, no. 5, pp. 542-548: Cambridge University Press, 1927.
[14] Hohenberg, P. and W. Kohn,' Inhomogeneous Electron Gas.' Physical Review, vol. 136, no. 3B,: p. B864-B871, 1964.
[15] W. Kohn and L. J. Sham, 'Self-consistent equations including exchange and correlation effects,' Physical Review, vol. 140, no. 4A, p. A1133, 1965.
[16] W. Kohn and L. Sham, 'Quantum density oscillations in an inhomogeneous electron gas,' Physical Review, vol. 137, no. 6A, p. A1697, 1965.
[17] J. P. Perdew, K. Burke, and M. Ernzerhof, 'Generalized gradient approximation made simple,' Physical Review, vol. 77, no. 18, p. 3865, 1996.
[18] F. Bloch, 'Über die quantenmechanik der elektronen in kristallgittern,' Zeitschrift für Physik, vol. 52, no. 7-8, pp. 555-600, 1929.
[19] H. Hellmann, 'A new approximation method in the problem of many electrons,' The Journal of Chemical Physics, vol. 3, no. 1, pp. 61-61, 1935.
[20] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and Joannopoulos, 'Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,' Reviews of Modern Physics, vol. 64, no. 4, p. 1045, 1992.
[21] Blöchl, P.E., Projector augmented-wave method. Physical Review B, vol. 50, no. 24,: p. 17953-17979, 1994.
[22] R. P. Feynman, 'Forces in molecules,' Physical Review, vol. 56, no. 4, p. 340, 1939.
[23] J. W. Gibbs, 'On the equilibrium of heterogeneous substances,' 1879.
[24] R. Morris, 'DO Hebb: The organization of behavior,' ed: Wiley: New York, 1949.
[25] F. Rosenblatt, 'Principles of neurodynamics. perceptrons and the theory of brain mechanisms,' Cornell Aeronautical Lab, Inc Buffalo, NY, 1961.
[26] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural network design. Pws Pub. Boston, 1996.
[27] D. E. Rumelhart, G. E. Hinton, and R. Williams, 'Learning representations by back-propagating errors,' Cognitive Modeling, vol. 5, no. 3, p. 1, 1988.
[28] Y. J. ,HSU; W. C. ,CHIANG; J. K. ,WU .'Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution.' Materials Chemistry and Physics, vol. 92, no. 1, pp. 112-117, 2005.
[29] T.-T. Shun, L.-Y. Chang, and M.-H. Shiu, 'Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys,' Materials Science Engineering: A, vol. 556, pp. 170-174, 2012.
[30] A. Stukowski, 'Structure identification methods for atomistic simulations of crystalline materials,' Modelling Simulation in Materials Science Engineering, vol. 20, no. 4, p. 045021, 2012.
[31] Z. Wu, H. Bei, G. M. Pharr, and E. P. George, 'Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,' Acta Materialia, vol. 81, pp. 428-441, 2014.
[32] Kresse, Georg, and D. Joubert. 'From ultrasoft pseudopotentials to the projector augmented-wave method.' Physical Review pp.1758,1999
[33] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.
[34] CS231n:Convolutional Neural Networks for Visual for Visual Recognition(http://cs231n.github.io/).
[35] X. Glorot and Y. Bengio, 'Understanding the difficulty of training deep feedforward neural networks,' in Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256, 2010.
[36] HE, Kaiming, et al. 'Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.' In: Proceedings of the IEEE international conference on computer vision. p. 1026-1034, 2015.
[37] Q. Jarosz, 'Neuron Hand-tuned,' in Transferred from en.wikipedia to Commons by Faigl.ladislav using Commons Helper., ed. English Wikipedia, 11 August 2009, pp. Recreated File:Neuron-no labels2.png in Inkscape and hand-tuned to reduce filesize. Created by Quasar (talk) 19:59, 11 August 2009 (UTC).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72504-
dc.description.abstract高熵合金是一種近幾年才開始快速發展的特殊合金,有別於傳統合金皆是由一種主要金屬元素,參雜其他元素所製作而成,高熵合金含有四種以上的金屬元素,且每種元素比例不超過35%。高熵合金最廣為人知的就是其四大特性,第一為高熵效應,使得各種元素隨機排列但產生結構簡單的固溶相,而不是質脆的生成物;第二為晶格扭曲效應,此效應導致高熵合金有特別的熱電性質,例如導熱速度慢,導電性差;第三為擴散延遲效應,這個使得高熵合金有效好的熱穩定性(耐高溫氧化);最後最有潛力的雞尾酒效應,可以添加其他性質的合金使高熵合金有添加物的性質,例如添加密度低的合金能使高熵合金重量變輕。本研究嘗試以分子動力學的方式計算鐵鈷鎳鉻高熵合金的材料性質。
對於分子動力學來說,由勢能場得到結構系統的能量與受力,進而取得其運動軌跡,因此,勢能場的好壞決定了模擬的準確度。第一原理計算能獲得最為準確的作用力與勢能場。但是第一原理的計算必須耗費相當大的計算資源以及時間,並且計算尺度被限縮(幾百顆原子),在考慮同時出現多種缺陷結構或隨機排列時,計算規模往往超過第一原理能夠負荷的量。因此,若是能找到一個方法能建立精準快速,且可以處理大尺度的勢能,對於分子模擬這領域將會有所貢獻。本研究採用機器學習的方式擬合高熵合金的勢能,隨機的原子排列方式使得訓練十分具有挑戰性,並討論將原子間的力列入訓練目標的重要性。
本研究將藉由計算高熵合金的基本性質,驗證機器學習方法訓練出的勢能與第一原理計算結果十分吻合(約1-5%的誤差),但會受到訓練集內結構種類所限制,接著利用此勢能進行了兩千多顆原子的蒙地卡羅方法,找出各種可能存在的局部最低點,並測試此結構在室溫300K的能量與溫度穩定性,模擬結果顯示兩者皆穩定,並將比較兩者的速度,證明其具有高度精準且計算速度大幅高越第一原理。
zh_TW
dc.description.abstractHigh Entropy Alloys (HEA) is a novel metallic material that has drawn increasing attentions from both academia and industries in recent years. In contrast to conventional alloys comprising of at most one or two principal elements, HEA system consists of more than four constituent elements with concentrations ranging between 5% and 35%. The entropic mixing effect arising from high configuration entropy ensures the HEAs to remain the simple solid solution phase with FCC, BCC or HCP crystal structures without phase segregations. The lattice distortion effect from atomic size differences makes HEA has unique thermal, electric, and mechanical properties such as low thermal/electric conductivities. Lattice distortion also slows down defect diffusion, brings obstacles to dislocation glides and prevents oxidation at elevated temperatures. Finally, the cocktail effect, namely, mixing atoms of distinct properties together, allows tuning material properties of HEAs with almost infinite degrees of freedom. These aforementioned features make HEAs emerge as the rising star as the future structural and electric materials. In this thesis, we attempted to investigate the material properties of Fe-Co-Ni-Cr HEA by using machine-learning-enabled atomistic simulations.
In atomistic simulations, the first principle calculations provide the most accurate system energies and atomic forces. However, the first principle calculations are computationally expensive, thereby preventing performing exhaustive sampling of configurations of HEAs. Classical molecular dynamics simulations (MD) allow efficient exploration of atomistic configurational space; however, the accuracy of MD calculations critically relies on the empirical force fields (or, potentials). In this thesis, by harnessing the power of machine learning, we employed the neural network potential model (NN) to predict the potential energy of HEA. The random arrangement of atoms makes training very challenging.
In this thesis, by computing the material properties of CoCrFeNi HEA with the trained NN potential, we demonstrated that the NN potential energy predictor can successfully reproduce results from first principle calculations with errors around 1-5%. Nonetheless, the accuracy of NN energy predictors critically rely on the selection training sets. The NN potential model offers a hundreds of thousand times computational speedup than first principle calculations while retaining the computational accuracies, thereby allowing atomistic Monte Carlo method and molecular dynamics simulations to explore the configurations and chemical short-range orders of high entropy alloys.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:01Z (GMT). No. of bitstreams: 1
ntu-108-R06543077-1.pdf: 7878843 bytes, checksum: 2da489a23403573b08f9faf428ce9ee3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 結構與特性 2
1.3 研究動機 4
1.4 文獻回顧 6
1.5 預期貢獻 8
第二章 理論計算及原理 9
2.1 第一原理分子動力學 9
2.1.1 分子動力學簡介 9
2.1.2 第一原理簡介 9
2.1.3 波恩-歐本海默近似(Born-Oppenheimer approximation) 10
2.1.4 密度泛函理論(Density Functional Theory ,DFT) 11
2.1.5 交換相關能 14
2.1.6 自洽方程式(Self-consistent) 15
2.1.7 布洛赫理論(Bloch Theorem) 16
2.1.8 贋勢(Pseudopotential) 16
2.1.9 投影綴加平面波(Project Augmented Waves ,PAW) 18
2.1.10 赫爾曼-費恩定理(Hellmann Feynman Theorem) 19
2.1.11 統計模型 19
2.2 類神經網路 21
2.2.1 類神經網路簡介 21
2.2.2 多層神經網路 25
2.2.3 過度訓練(Overfitting) 31
2.2.4 運用類神經網路 32
第三章 模擬流程及模型建構 36
3.1 模擬流程 36
3.1.1 流程圖 37
3.2 訓練集生成 38
3.2.1 材料建立 38
3.2.2 訓練集結構 39
3.2.3 VASP設定 44
3.2.4 KPOINTS測試 45
3.3 勢能訓練 46
3.3.1 原子機器學習套件 (Atomistic Machine-learning Package ,AMP) 46
3.3.2 截斷半徑(Cutoff Radius) 47
3.3.3 特徵(Fingerprint) 48
3.3.4 誤差函數形式 51
3.3.5 神經元的節點數量 53
3.3.6 權重預設值 53
第四章 結果與討論 55
4.1 介紹 55
4.2 勢能模型(原子受力未加入訓練標的) 55
4.2.1 勢能測試與驗證(原子受力未加入訓練標的) 55
4.2.2 勢能預測(原子受力未加入訓練標的) 57
4.2.3 計算材料性質(原子受力未加入訓練標的) 65
4.2.4 蒙地卡羅模擬(原子受力未加入訓練標的) 69
4.2.5 分子動力學模擬(原子受力未加入訓練標的) 70
4.3 勢能模型(原子受力加入訓練標的) 71
4.3.1 勢能測試與驗證 72
4.3.2 勢能預測 73
4.3.3 計算材料性質 81
4.3.4 蒙地卡羅模擬 86
4.3.5 大尺度分子動力學模擬 87
4.4 速度比較 88
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來展望 90
第六章 參考資料 91
附錄 95
dc.language.isozh-TW
dc.subject分子勢能場zh_TW
dc.subjectFeCoNiCrzh_TW
dc.subject高熵合金zh_TW
dc.subject第一原理zh_TW
dc.subject分子動力學zh_TW
dc.subject機器學習zh_TW
dc.subject類神經網路zh_TW
dc.subjectHigh Entropy Alloyen
dc.subjectFirst Principleen
dc.subjectMolecular Dynamicsen
dc.subjectMachine Learningen
dc.subjectNeural Networken
dc.subjectInteratomic Potentialen
dc.title以前饋式神經網路訓練鐵鈷鎳鉻高熵合金勢能應用於微結構原子尺度模擬zh_TW
dc.titleFeedforward Neural Network Energy Predictor for Atomistic Scale Simulations of Microstructures of FeCoNiCr High Entropy Alloysen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor包淳偉
dc.contributor.oralexamcommittee朱錦洲,林真真,郭志禹,宮春斐
dc.subject.keywordFeCoNiCr,高熵合金,第一原理,分子動力學,機器學習,類神經網路,分子勢能場,zh_TW
dc.subject.keywordHigh Entropy Alloy,First Principle,Molecular Dynamics,Machine Learning,Neural Network,Interatomic Potential,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201902372
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved