Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorBo-Wei Linen
dc.contributor.author林柏維zh_TW
dc.date.accessioned2021-06-17T07:00:01Z-
dc.date.available2029-08-01
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation[1] R. Glowinski, T.-W. Pan, T. I. Hesla, and D. Joseph, 'A distributed Lagrange multiplier/fictitious domain method for particulate flows,' International Journal of Multiphase Flow, vol. 25, no. 5, pp. 755-794, 1999.
[2] T.-W. Pan, A. Guo, S.-H. Chiu, and R.Glowinski, 'A 3D DLM/FD method for simulating the motion of spheres and ellipsoids under creeping flow conditions,' Journal of Computational Physics, vol. 352, pp. 410-425, 2018.
[3] P. Kulkarni and J. Morris, 'Pair-sphere trajectories in finite-Reynolds-number shear flow,' Journal of Fluid Mechanics, vol. 596, pp. 413-435, 2008.
[4] M. Zurita-Gotor and J. Bławzdziewicz, 'Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres,' Journal of Fluid Mechanics, vol. 592, pp. 447-469, 2007.
[5] E. Monaco and G. J. Brenner, 'Influence of walls on the migration of non-Brownian spherical particles in creeping flow: a lattice Boltzmann study,' Philosophical Transactions of the Royal Society A: Mathematical, Physical
Engineering Sciences, vol. 369, no. 1945, pp. 2387-2395, 2011.
[6] G. B. J. Jeffery, 'The motion of ellipsoidal particles immersed in a viscous fluid,' Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical physical character, vol. 102, no. 715, pp. 161-179, 1922.
[7] E. Harper and I.-D. J. Chang, 'Maximum dissipation resulting from lift in a slow viscous shear flow,' Journal of Fluid Mechanics, vol. 33, no. 2, pp. 209-225, 1968.
[8] E. Hinch and L. J. Leal, 'The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles,' Journal of Fluid Mechanics, vol. 52, no. 4, pp. 683-712, 1972.
[9] P. J. Saffman, 'On the motion of small spheroidal particles in a viscous liquid,' Journal of Fluid Mechanics, vol. 1, no. 5, pp. 540-553, 1956.
[10] J. Einarsson, F. Candelier, F. Lundell, J. Angilella, and B. J. Mehlig, 'Effect of weak fluid inertia upon Jeffery orbits,' Physical Review E, vol. 91, no. 4, p. 041002, 2015.
[11] T.-W. Pan, C.-C. Chang, and R. Glowinski, 'On the motion of a neutrally buoyant ellipsoid in a three-dimensional Poiseuille flow,' Computer methods in applied mechanics engineering, vol. 197, no. 25-28, pp. 2198-2209, 2008
[12] T.-W. Pan, S. Zhao, X. Niu, and R. J. Glowinski, 'A DLM/FD/IB method for simulating compound vesicle motion under creeping flow condition,' Journal of Computational Physics, vol. 300, pp. 241-253, 2015.
[13] N. Sharma, Y. Chen, and N. A. J. Patankar, 'A distributed Lagrange multiplier based computational method for the simulation of particulate-Stokes flow,' Computer methods in applied mechanics engineering, vol. 194, no. 45-47, pp. 4716-4730, 2005.
[14] T.-W. Pan, S. Zhao, X. Niu, and R.Glowinski, 'A DLM/FD/IB method for simulating compound vesicle motion under creeping flow condition,' Journal of Computational Physics, vol. 300, pp. 241-253, 2015.
[15] R. Glowinski, J. Periaux, Z. Shi, and O. Widlund, 'Domain Decomposition Methods in Scientific and Engineering Computing,' ed: John Wiley, New York, 1996.
[16] T.-W. Pan, D. D. Joseph, and R. J. Glowinski, 'Simulating the dynamics of fluid–ellipsoid interactions,' Computers structures, vol. 83, no. 6-7, pp. 463-478, 2005.
[17] J. Van der Werff and C. J. De Kruif, 'Hard‐sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate,' Journal of Rheology, vol. 33, no. 3, pp. 421-454, 1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72503-
dc.description.abstract在自然環境與工程應用中,粒子在流體中運動的行為是非常重要的特性,如血液內各細胞的流動情形,或藥物溶液混和的效果等,都與之有關,本文模擬兩粒子在邊界剪力流時使用分佈式拉格朗日乘數/虛擬域(DLM/FD)結合史托克方程式(Stocks equation)與尤拉-牛頓方程式(Euler-Newton’s equations)來近似三維流場中球形與橢球型粒子的移動分布。
本研究主要成果有三,首先將計算兩粒子間之距離方法以球體參數位置導入牛頓疊代法計算,以加速計算速度,再以DLM/FD法模擬球型與橢球型粒子在剪力流中之相對運動,並比較兩種形狀之粒子運動情形之差異,最後模擬多顆球在剪力流中之運動情形,比較相同半徑與不同半徑之差異。
兩粒子間距離計算方法改善前後之結果誤差約為-3.015%左右,差距並不大,時間減少50-75%,速度上得到有效的提升。在模擬結果中粒子形狀以球型與橢球為主,以改變初始位置、半徑及牆距來模擬各情況下兩粒子流動時之軌跡,以達到控制粒子流動型態之效果。
在兩球模擬結果中,可發現在控制流動軌跡時,改變初始位置及牆距之效果較改變半徑明顯,牆距越小與兩球間距離越進近較易出現交換型軌跡,改變半徑是否與軌跡改變關係較小,在兩橢球結果中,會出現另一種滾轉型軌跡,但較無法控制出現,交換型與非交換型軌跡出現時機與兩球之結果相似,在多球模擬結果中,若將半徑隨機改變,交換型軌跡較易出現。
zh_TW
dc.description.abstractIn natural environment and engineering applications, the behavior of particles moving in a fluid is a very important characteristic, such as the flow of cells in the blood, or the effect of mixing drug solutions, etc. This paper simulates two particles in the boundary shear flow using a distributed Lagrangian multiplier/virtual domain (DLM/FD) combined with the Stocks equation and Euler-Newton's equations. Movement distribution of spherical and ellipsoidal particles in three-dimensional flow field.
The main results of this research are three. Firstly, the distance between two particles is calculated by introducing the position of the spherical parameter into the Newton iteration method to accelerate the calculation speed. Then the DLM/FD method is used to simulate the relative motion of spherical and ellipsoidal particles in the shear flow. And finally compare the difference between the two particles in the shape of the movement.
The error between the two-particle distance calculation methods is about -3.015%, the difference is not large, the time is reduced by 50-75%, and the speed is effectively improved. In the simulation results, the particle shape is mainly spherical and ellipsoidal, and the initial position, radius and wall distance are changed to simulate the trajectory of the two particles flowing under each condition, so as to achieve the effect of controlling the particle flow pattern.
In the simulation results of the two spheres, it can be found that when the flow trajectory is controlled, the effect of changing the initial position and the wall distance is obviously changed. The smaller the wall distance and the closer the distance between the two spheres is easier to exchange trajectory than the radius is changed.
In the results of the two ellipsoids, another roll transition trajectory will appear, but it is less controllable. The timing of the exchanged and non-exchanged trajectories is similar to the result of the two spheres. In the multi-sphere simulation results, if the radius is randomly changed, Exchange trajectories are more likely to occur.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:01Z (GMT). No. of bitstreams: 1
ntu-108-R06543064-1.pdf: 7199592 bytes, checksum: 94e552c1c168008b1ab77309fbea2af2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 2
1.3 文獻回顧 2
1.4 系統建構 7
第二章 計算方法 11
2.1二維兩橢圓間距離 11
2.2 三維兩橢球間距離 18
2.3離散方法 28
2.3.1 有限元素離散 28
2.3.2 關於子問題的解 31
第三章 模擬結果 34
3.1 二維兩橢圓間距離計算結果 34
3.2 三維兩橢球間距離計算結果 37
3.3 兩球在剪力流中之運動模擬 42
3.3.1 W=1 R1=R2=0.1 43
3.3.2 W=1 R1=R2='0.1*' '2' ^('1' /'3' ) 44
3.3.3 W=2 R1=R2=0.1 45
3.3.4 W=2 R1=R2=0.1*'2' ^('1' /'3' ) 46
3.3.5 W=1 R1=0.1 R2=0.1*'2' ^('1' /'3' ) 48
3.3.6 W=2 R1=0.1 R2=0.1*'2' ^('1' /'3' ) 49
3.3.7 W=1 R1=R2=0.2 (x21=0.05 x22=-0.05) 51
3.3.8 W=1 R1=R2=〖(0.0375)〗^0.5 (x21=0 x22=0) 52
3.3.9 W=2 R1=R2=0.2 (x21=0.05 x22=-0.05) 53
3.3.10 W=2 R1=R2=〖(0.0375)〗^0.5 (x21=0 x22=0) 54
3.4 兩橢球在剪力流中之運動模擬 56
3.4.1 W=1 , a1=a2=0.125 , b1=b2=c1=c2=0.1 57
3.4.2 W=1 , a1=a2=0.15 , b1=b2=c1=c2=0.1 58
3.4.3 W=1 , a1=a2=0.2 , b1=b2=c1=c2=0.1 59
3.4.4 W=2 , a1=a2=0.125 , b1=b2=c1=c2=0.1 60
3.4.5 W=2 , a1=a2=0.15 , b1=b2=c1=c2=0.1 61
3.4.6 W=2 , a1=a2=0.2 , b1=b2=c1=c2=0.1 62
3.3.7 W=2 , a1=a2=0.125 , b1=b2=c1=c2=0.1 (長軸垂直x2軸方向) 64
3.5 多顆球在剪力流中之運動模擬 66
3.5.1 w=1 iseed=37 r=0.1 (54球同大小) 67
3.5.2 w=1 iseed=37 (54球不同大小) 68
3.5.3速度場比較 70
第四章 結論 74
5.1兩橢球間距離計算改善 74
5.2 兩球運動模擬結果 74
5.3 兩橢球運動模擬結果 75
5.4 多球運動之結果 75
第五章 未來展望 76
5.1 兩橢球距離計算改善 76
5.2 增加多顆球/橢球之運動模擬 76
5.3 多粒子混和/流變效應 76
第六章 參考文獻 77
dc.language.isozh-TW
dc.title在三維系統中加速DLM/FD法並模擬球與橢球在剪力流中相對運動與位移zh_TW
dc.titleAccelerating 3D DLM/FD method for simulating the relative motion and migration of spheres and ellipsoids under shear flow conditionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱錦洲,郭光輝,蘇正瑜,謝政達
dc.subject.keywordDLM/FD,兩粒子間距離,牛頓疊代法,有限元素法,zh_TW
dc.subject.keywordDLM/FD,distance between two particles,Newton iteration,finite element method,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201902373
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved