Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72493
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良正
dc.contributor.authorTe-Chun Liuen
dc.contributor.author劉德鈞zh_TW
dc.date.accessioned2021-06-17T06:59:52Z-
dc.date.available2024-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citationChopra, A. K. (2011). Dynamics of structures: theory and applications to earthquake engineering (4 ed.): Prentice-Hall.
Hahn, G. D. a. S., K.R. (1992). Effects of added-damper distribution on the seismic response of buildings. Computers & Structures, 43(5), 941-950.
Hancock, J., Watson-Lamprey, J., Abrahamson, N. A., Bommer, J. J., Markatis, A., McCOY, E., & Mendis, R. (2006). An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering, 10(spec01), 67-89.
Hu, Y., Liu, L., & Rahimi, S. (2017). Seismic vibration control of 3D steel frames with irregular plans using eccentrically placed MR dampers. Sustainability, 9(7), 1255.
Hwang, J.-S., Huang, Y.-N., Yi, S.-L., & Ho, S.-Y. (2008). Design formulations for supplemental viscous dampers to building structures. Journal of structural engineering, 134(1), 22-31.
Hwang J.S., L., W.C. and Wu, N.J. . (2013). Comparison of distribution methods for viscous damping coefficients to buildings. Structure and Infrastructure Engineering, 9(1), 28-41.
J. L. Lin, K. C. T. a. M. C. C. (2014). The reasons for the trends in torsional efects in asymmetric plan buildings. Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering.
Lavan, O., & Levy, R. (2006). Optimal peripheral drift control of 3D irregular framed structures using supplemental viscous dampers. Journal of Earthquake Engineering, 10(06), 903-923.
Leu, L. J., & Chang, J. T. (2014). A simple approach for optimal allocation of dampers in nonsymmetrical 3D multi-storey structures. International Journal of Structural Stability and Dynamics, 14(03).
Levy, R., & Lavan, O. (2006). Fully stressed design of passive controllers in framed structures for seismic loadings. Structural and Multidisciplinary Optimization, 32(6), 485-498.
Lin, W. H., & Chopra, A. K. (2002). Earthquake response of elastic SDF systems with non‐linear fluid viscous dampers. Earthquake Engineering & Structural Dynamics, 31(9), 1623-1642.
Mevada, S. V., & Jangid, R. (2015). Seismic response of torsionally coupled building with passive and semi-active stiffness dampers. International Journal of Advanced Structural Engineering (IJASE), 7(1), 31-48.
Pekcan, G., Mander, J. B. and Chen, S. S. (1999). Design and Retrofit Methodology for Building Structures with Supplemental Energy Dissipating Systems. Retrieved from
Pnevmatikos, N. G. (2012). Structural control for asymmetric buildings subjected to earthquake excitations. Paper presented at the 15th world conference on earthquake engineering, Lisboan.
Raggett, J. D. (1975). Estimating damping of real structures. Journal of the structural division, 101(ASCE# 11554 Proceeding).
Takewaki, I. (1997). Optimal damper placement for minimum transfer functions. Earthquake Engineering & Structural Dynamics, 26(11), 1113-1124.
Takewaki, I. (2000). Optimal damper placement for planar building frames using transfer functions. Structural and Multidisciplinary Optimization, 20(4), 280-287.
Tovar, C., & Lopez, O. A. (2004). Effect of the position and number of dampers on the seismic response of frame structures. Paper presented at the 13th World Conference of Earthquake Engineering, Vancouver, BC, Canada.
Whittle, J. K., Williams, M.S., Karavasilis, T. L. and Blakeborough A. (2012). A Comparison of Viscous Damper Placement Methods for Improving Seismic Building Design. Journal of Earthquake Engineering, 16(4), 540-560.
Yanik, A., Aldemir, U., & Bakioglu, M. (2016). Seismic vibration control of three dimensional structures with a simple approach. J Vib Eng Technol, 4(3), 235-247.
建築物耐震設計規範及解說,內政部營建署,民國100年1月15號。
呂良正 、張仁德 (2011), 三維不對稱多層房屋結構阻尼器最佳化配置簡易方法, 結構工程, 26(4), 17-30。
呂良正、張仁德、張慈昕 (2010), 平面剪力屋架中黏性阻尼器的簡易最佳配置法, 結構工程, 25(4), 27-40。
詹鵬台 (2016), 黏性阻尼器應用於二維與三維建築結構之最佳化設計,國立臺灣大學土木工程研究所碩士論文。
鄭至伸 (2015), 黏性阻尼器應用於建築結構之最佳化設計,國立臺灣大學土木工程研究所碩士論文。
盧易 (2018), 考慮多模態之黏性阻尼器最佳化分配及其於建築結構之應用,國立臺灣大學土木工程研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72493-
dc.description.abstract黏性阻尼器(Viscous Damper)經常被應用於建築結構作為被動消能元件,但目前的規範中,對於黏性阻尼器之配置方法較無具體的規定與建議。此研究之目的為利用三維建築模型去尋找黏性阻尼器之最佳化分配,期望使阻尼器可有效發揮其功用,降低結構物於地震下之反應。
本研究整理現有阻尼器分配法將之分為直接分配法及動力分析分配法。設計過程中直接藉由結構物本身特性進行分配,不須經過動力分析之分配法為直接分配法;而設計過程須經過動力分析之分配法為動力分析分配法。
推廣至三維建築模型時,結構質心與剛心可能不重合,面對此偏心結構,阻尼器的設計不再是各樓層的阻尼係數的配置,須額外考慮在各樓層平面中阻尼器擺放的位置,因此本文引入「臨界偏心率」的概念,分析各阻尼器分配法之臨界偏心率,進而得到結構平面中阻尼擺設的策略為:結構偏心小於臨界偏心率採用異側阻尼擺設,而結構偏心大於臨界偏心率採用同側阻尼擺設。
藉由將真實地震擬合至6種地震工址反應譜之人工合成地震,進行線性動力歷時分析及非線性動力歷時分析,得到最佳阻尼分配法為Lavan法,同時也可觀察出阻尼配置分布於中低樓層是較好的配置方式,但仍建議使用多種分配法分別來分配阻尼器並通過數值模型檢核並選出較適合該建築物之分配法。另外為簡化結論以利於工程師做參考,本文亦針對Lavan法作臨界偏心率之修正,,當阻尼比為10%時,使用Lavan法之臨界偏心率為5%;當阻尼比為20%時,用Lavan法之臨界偏心率為15%。
zh_TW
dc.description.abstractViscous damper is often used in building structures as passive energy dissipation devices. However, the issue of the efficient placement of viscous dampers has received less attention in existing codes. The purpose of this research is to find the optimal allocation of viscous dampers by using three-dimensional building model, and expecting the viscous dampers work more efficiently with optimal allocation under seismic forces.
In this study, there are five existing distribution methods divided into two groups, “Direct Distribution Method” and “Dynamic Analysis Distribution Method”. The method that allocate viscous dampers based on structure properties without dynamic analysis are called “Direct Distribution Method”, with dynamic analysis are called “Dynamic Analysis Distribution Method”.
When extended to three-dimensional building models, the center of mass and the center of rigidity might not coincide. For these eccentric structures, the design of dampers should not only consider the allocation of damper coefficient but also the position of each damper in each floor. Therefore, we introduce “Critical Eccentricity Ratio” to obtain the strategy of damper arrangement with all distribution methods. If the structural eccentricity is smaller than critical eccentricity ratio, we should apply damper arrangement on the opposite side. On the contrary, apply damper arrangement on the same side if the structural eccentricity is greater than critical eccentricity ratio.
Through the results of six artificial earthquakes generated from response spectrums of different districts, we found out that “Lavan method” is the best method within all models by carrying out the linear dynamic analysis and non-linear dynamic analysis. Nevertheless, it is still suggested that better to use several distribution methods together in the design model and then find the most suitable allocation method.
For further investigation, the research simplified the rule of critical eccentricity ratio of Lavan method. When damping ratio of Lavan method is 10%, the modified critical eccentricity ratio is 5%; when damping ratio of Lavan method is 20%, the modified critical eccentricity ratio is 15%.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:52Z (GMT). No. of bitstreams: 1
ntu-108-R06521218-1.pdf: 8094150 bytes, checksum: 0ae83627656fa810abdbafb102921a91 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究內容 3
第二章 三維結構動力方程式之建構 4
2.1 前言 4
2.2 單一樓層之三維模型 4
2.3 多樓層之三維模型 9
2.4 偏心率 10
2.5 小結 11
第三章 阻尼器最佳化分配法 12
3.1 前言 12
3.2 阻尼設計於三維結構 12
3.3 分配法比較標準 13
3.3.1 單自由度結構系統黏性阻尼器提供之阻尼比 13
3.3.2 含黏性阻尼器系統之有效阻尼比 14
3.3.3 總阻尼係數 16
3.3.4 剪力構架 17
3.3.5 人工合成設計地震歷時 21
3.4 直接分配法 24
3.4.1 按樓層彈性應變能分配法(SSSE) 24
3.4.2 按黏性阻尼器之消散能量分配法(EDVD) 24
3.4.3 竹脇法(Takewaki Method) 25
3.5 動力分析分配法 27
3.5.1 拉文法 (Lavan A/R Method) 27
3.6 阻尼器阻尼係數配置結果 28
3.6.1 均勻分配法(UD) 29
3.6.2 按樓層彈性應變能分配法(SSSE) 30
3.6.3 按黏性阻尼器之消散能量分配法(EDVD) 31
3.6.4 竹脇法(Takewaki Method) 32
3.6.5 拉文法(Lavan A/R Method) 33
3.7 小結 34
第四章 三維偏心結構與阻尼器擺設探討 36
4.1 前言 36
4.2 模型介紹 36
4.3 移動阻尼器對於偏心結構之影響 37
4.3.1 最大層間位移 37
4.3.2 異側阻尼擺設 38
4.3.3 同側阻尼擺設 40
4.4 臨界偏心率 42
4.5 小結 45
第五章 三維偏心結構與阻尼器分配法擺設最佳化 46
5.1 前言 46
5.2 模型介紹 46
5.3 最佳阻尼器分配方法 47
5.3.1 性能指標 47
5.3.2 線性動力歷時分析 48
5.3.3 非線性動力歷時分析 50
5.4 各阻尼器分配法之臨界偏心率 55
5.4.1 均勻分配法(UD) 56
5.4.2 按樓層彈性應變能分配法(SSSE) 58
5.4.3 按黏性阻尼器之消散能量分配法(EDVD) 60
5.4.4 竹脇法(Takewaki) 62
5.4.5 拉文法(Lavan A/R Method) 64
5.4.6 按地層分類之臨界偏心率 66
5.5 修正臨界偏心率 69
5.6 小結 75
第六章 總結及未來展望 76
6.1 總結 76
6.2 未來展望 77
附錄一 各模型勁度資料 78
附錄二 各阻尼器分配法設計結果 79
參考文獻 107
dc.language.isozh-TW
dc.subject非線性動力分析zh_TW
dc.subject偏心zh_TW
dc.subject三維建築結構模型zh_TW
dc.subject阻尼最佳化配置zh_TW
dc.subject黏性阻尼器zh_TW
dc.subjectviscous damperen
dc.subjectoptimal placement of dampersen
dc.subjectthree dimensional building modelen
dc.subjecteccentric structureen
dc.subjectnon-linear dynamic analysisen
dc.title應用黏性阻尼器於三維建築結構之最佳化分配研究zh_TW
dc.titleOptimal Allocation of Viscous Dampers for Three-Dimensional Building Structuresen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭世榮,宋裕祺,黃仲偉
dc.subject.keyword黏性阻尼器,阻尼最佳化配置,三維建築結構模型,偏心,非線性動力分析,zh_TW
dc.subject.keywordviscous damper,optimal placement of dampers,three dimensional building model,eccentric structure,non-linear dynamic analysis,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201902461
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved