Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良正
dc.contributor.authorMeng-Sheng Chienen
dc.contributor.author簡孟笙zh_TW
dc.date.accessioned2021-06-17T06:59:46Z-
dc.date.available2024-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citationAbel, J. F., & Chilton, J. C. (2011). Heinz Isler – 50 years of “new shapes for shells”.Journal of The International Association for Shell and Spatial Structures, 52(3), 131-134.
Arora, J. S. (2011). Introduction to Optimum Design. London, Academic Press.
Basso, P., Del Grosso, A. E., Pugnale, A., & Sassone, M. (2009). Shape optimization of free form grid‐shells. Innovative Design & Construction Technologies – Building complex shapes and beyond Conference Paper.
Butcher, J. C. (1963). Coefficients for the study of Runge-Kutta integration processes.Journal of the Australian Mathematical Society, 3(2), 185-201.
Cheng, C. M., & Fu, C. L. (2010). Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 98(6-7), 328-344.
Chilton, J., & Chuang, C. C. (2017). Rooted in nature: aesthetics, geometry and structure in the shells of Heinz Isler. Nexus Network Journal. 19(3), 763-785.
Darmofal, D., & Haimes, R. (1996). An Analysis of 3D Particle Path Integration Algorithms. Journal of Computational Physics, 123(1), 182–195.
Espath, L. F. R., Linn R. V., & Awruch, A. M. (2011). Shape optimization of shell structures based on NURBS description using automatic differentiation. International Journal for Numerical Methods in Engineering, 88, 613-636.
Gere, J. M., Goodno, B. J. (2014). Mechanics of Materials (Eighth Edition). Stamford, Connecticut: Cengage Learning
Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The ribbed floor slab systems of Pier Luigi Nervi. Proceedings of the International Association for Shell and Spatial Structures, 54, Nos. 2 & 3 September n. 176 & 177, pp. 127-136(10).
Helbig, T., Giampellegrini, L., & Oppe, M. (2014). “Carioca Wave” – a free-form steel-and-glass canopy in Rio de Janeiro. Brazil. Steel Construction, 7 (4), 252-257.
Jiang, Y. (2015). Free form finding of grid shell structures. University of Illinois Urbana-Champaign Master Thesis.
Joy, K. I. (2007) Numerical Methods for Particle Tracing in Vector Fields. On-Line Visualization Notes.
Kao, D., & Shen, H. W. (2010). Introduction to Vector Field Visualization. A Tutorial for IEEE Pacific Visualization Symposium.
Kegl, M., & Brank B. (2006). Shape optimization of truss-stiffened shell structures with variable thickness. Computer Methods in Applied Mechanics and Engineering. 195(19–22), 2611-2634.
Kelly, D. W., & Tosh, M. W. (2000). Interpreting load paths and stress trajectories in elasticity. Engineering Computation, 17(2), 117-135.
Kelly, P. (2013). Solid Mechanics Lecture Notes Part II, Department of Engineering Science, The University of Auckland. pp. 66-76.
Knippers, J., & Helbig, T. (2009). Recent developments in the design of glazed grid shells. International Journal of Space Structures, 24(2), 111-126.
Kociecki, M., & Adeli, H. (2015). Shape optimization of free-form steel space-frame roof structures with complex geometries using evolutionary computing. Engineering Applications of Artificial Intelligence, 38, 168-182.
Kwok, T. H., Li, Y., & Chen, Y. (2016). A structural topology design method based on principal stress line. Computer-Aided Design, 80, 19-31.
Li, Y., & Chen, Y. (2010) Beam Structure Optimization for Additive Manufacturing based on Principal Stress Lines. Solid Freeform Fabrication Conference Paper, 666-678.
Michell, A.G.M. (1904) The Limits of Economy of Material in Frame Structures.Philosophical Magazine, 8, 589-597.
Rizzuto, J. P. (2018). Experimental investigation of reciprocally supported element (RSE) lattice honeycomb domes structural behavior. Engineering Structures, 166, 496-510
Richardson, J. N., Adriaenssens, S., Coelho, R. F., & Bouillard, P. (2013). Coupled form-finding and grid optimization approach for single layer grid shells. Engineering Structures, 52, 230-239.
Rozvany, G. I. N. (1998) Exact analytical solutions for some popular benchmark problems in topology optimization. Structural Optimization, 15(1),42-48
Tam, K. M. M., Mueller, C. T., Coleman, J. R., & Fine, N. W. (2016). Stress line additive manufacturing(SLAM) for 2.5-D shells. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium.
Tam, K. M. M., & Mueller, C. T. (2015). Stress Line Generation for Structurally Performative Architectural Design. 35th Annual Conference of the Association for Computer Aided Design in Architecture: Computational ecologies: design in the Anthropocene Conference Paper.
Tam, K. M. M. (2015). Principal Stress Line Computation for Discrete Topology Design. Massachusetts Institute of Technology Master Thesis.
Tam, K. M. M., Mueller C. T. (2017). Additive Manufacturing Along Principal Stress Lines. 3D Printing and Additive Manufacturing, 4(2), 63–81.
Versprille, K. J., (1975). Computer-Aided Design Applications of the Rational B-Spline approximation Form.
 
Venkayya, V. B. (1993). Structural Optimization: Status and Promise. AIAA Series: Progress in Aeronautics and Astronautics, 150.
Li, W., Zheng, A., You, L., Yang, X., Zhang, L. & Liuy, L. (2017). Rib-reinforced shell structure. Computer Graphics Forum, 36(7), 15-27.
Zhang, J., Shi, Y., & Xie, G. (2013). Design recommendation for large depth-to-span ratio and opening of single-layer spherical lattice shells. Applied Mechanics and Materials, 351-352, 109-113.
Zhu, L., Liu, Q., Gao, P., Ma, Y., Guo, B., & Du, W. (2017). An optimum method for latticed shells based on concept of the compression line. MATEC Web of Conferences,100, 04015
鋼構造建築物鋼結構設計技術規範,內政部營建署,民國99年9越16號。
風工程理論及應用,中華民國風工程學會,民國105年7月。
混凝土結構設計規範,內政部營建署,民國106年5月31號
王建凱(2005),應用有限元素套裝軟體 ABAQUS 於結構最佳化演進,國立臺灣大學土木工程學研究所碩士論文。
李宗豪(2005),以有限元素套裝軟體為分析引擎之最佳化設計系統架構開發,國立臺灣大學土木工程學研究所碩士論文。
康銘展(2007),整合有限元素商業軟體於最佳化設計系統及其應用,國立臺灣大 學土木工程學研究所碩士論文。
蘇穎香(2006),應用最佳化設計系統於板、殼結構,國立臺灣大學土木工程學研究所碩士論文。
連嘉玟(2017),以Python整合有限元素軟體ABAQUS於板殼結構最佳化,國立臺灣大學土木工程學研究所碩士論文。
林享樑(2018),具自由曲面薄殼結構最佳化設計,國立臺灣大學土木工程學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72485-
dc.description.abstract隨著多樣化且具有流線形之大跨度薄殼結構在結構工程案例中日趨增加,本研究除了透過自由曲面建模之技術模擬薄殼結構,也導入最佳化理論於設計之過程,並結合本研究開發之主應力線生成演算法,以提供設計者兼具力學性質與美學外型之設計結果。
本研究將簡介何謂主應力線,詳述主應力線生成之概念及作法,從後處理計算、離散向量場內插到結合數值積分的應用,並透過多種載重及邊界條件的比對來探討主應力線之性質,且搭配實際樓版案例,討論使用主應力梁版系統之優異。
本研究利用NURBS作為主要的自由曲面建模方法,透過控制點、節點向量和基底函數等進行參數化控制和建模,其中利用最佳化方法之循序二次規劃法(Sequential Quadratic Programming, SQP)做最佳化設計,並結合主應力線生成演算法,探討最佳化薄殼結構在主應力線方向佈置加勁肋梁之影響。
真實世界中存在有眾多且多樣的實際網柵薄殼結構,本研究將參考部分案例,針對實際尺寸之網柵薄殼結構做最佳化設計,且結合主應力線之佈置方式,將其作為網柵主結構比較優劣,並考慮活載重、自重及風載重對結構的影響,其中,風載重將以計算流體力學(CFD)模擬結構所受之風壓分佈,在結合我國的設計規範下,定義出最佳化問題之限制式,使得實際網柵薄殼結構之模擬結果更具參考價值。
本研究分析工具以Python語言進行程式撰寫,結合有限元素軟體ABAQUS進行分析,程式內容將包含上述提到之NURBS曲面建模方法以及本研究所開發之主應力線生成演算法,透過ABAQUS進行最佳化之自動化建模與分析,以獲得最終設計結果。
zh_TW
dc.description.abstractShell structures are widely used in structure design due to the benefit of their load-carrying capacity. However, considering the large-span shells failure region, the issues of designing reinforcement for the thin shell or supporting structure optimally for the grid shell are coming to be essential to be sorted out. Therefore, this thesis focuses on using principal lines generation techniques to stiffen the large span shell structures, model the grid shell structures and integrates with free-form surface based on optimization theory to obtain a final design considering both aesthetics and mechanical behaviors.
In this thesis, we suggest a computational algorithm to design and optimize ribs layout on given design domain to enhance the global structural and mechanical performance. The core concept of our method is to place ribs along the principal stress lines which demonstrate the paths of stress flow. Based on certain surface and external loads, Finite Element Analysis can be performed and solve the physical field numerically. With the post-processing from FEM results, directional vector field of principal stress on nodes can be obtained by eigenvalue calculation. We use the ideal of particle trajectories to generate the principal stress lines by numerical integration. Discussion of sensitivity, orthogonality, accuracy and other property of principal stress lines are all considered in this research.
Besides ribs layouts, shape optimization and sizing optimization are also the major parts and typical types of structural optimization. Our thesis using NURBS, which is a parametric method to approach the free-form surface, to construct and control our design domain. This method contains geometric tuning factors, such as control points, knots factors, etc. that gives user a great flexibility to handle the shape analytically. In the both shape and sizing optimization problems, sequential quadratic programming(SQP) is chosen as the optimization method to find the final design.
In our implementation, Demonstration of principal stress lines on shell structures are separated into two parts. Firstly, ribs play a reinforced role in the shell structure which can improve the overall structural performance and deflection. Secondly, some famous real grid shell structures are taken as examples and utilized as the initial models of optimization problems. After acquiring the optimal results, switch the grid with ribs along the stress flow to achieve better static performances. Mentioning about designing the real grid shell structure, some factors that may influence the shell structure must be considered, such as load cases, structural strength, maximum displacement, etc. Self-weight, live load and wind load are often considered as the essential load cases. Computational fluid dynamic (CFD) analysis will be used to attain the wind pressure among the complex shape of shell surface. After solving by CFD analysis, and then mapping as a distribution of wind pressure to the surface of shell structures. Furthermore, the constraints of optimization problems are defined by Taiwan construction specifications and limit conditions specified in the codes, such as limitation of strength and displacement. Through these considerations to real grid shell structure design, engineers and architects can get more practical optimal result as reference.
This research develops Python program to control the finite element analysis commercial software ABAQUS. With the analysis results from ABAQUS, the program can carry out the optimization analysis and find the final optimal results. The Python program allows users to create free-form surface by previous parametric NURBS method and generate the principal stress lines by our numerical method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:46Z (GMT). No. of bitstreams: 1
ntu-108-R06521214-1.pdf: 12849471 bytes, checksum: 56c13b99f305a1c26cad316ff6ac82f6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xviii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容 6
第二章 主應力線與自由曲面建構及結構最佳化方法 7
2.1 前言 7
2.2 主應力線生成演算法 7
2.2.1 後處理(特徵值分析) 7
2.2.2 離散向量場內插 8
2.2.3 應力軌跡 10
2.2.3.1 Euler Method 11
2.2.3.2 Improved Euler Method 12
2.2.3.3 4th order Runge Kutta Method 12
2.2.4 主應力線生成誤差控制 14
2.2.4.1 數值積分敏感性 14
2.2.4.2 主應力線正確性 15
2.2.4.3 主應力線正交性 19
2.2.4.4 二維例題文獻比較 20
2.2.5 三維調整 20
2.2.5.1 向量轉換 21
2.2.5.2 投影面拉升 25
2.2.5.3 三維例題文獻比較 27
2.3 自由曲面建構方法 30
2.3.1 NURBS 30
2.4 最佳化問題 32
2.5 結構最佳化 33
2.5.1 形狀最佳化 35
2.5.2 尺寸最佳化 35
2.6 結構最佳化分析方法介紹 35
2.6.1 數學規劃法(Mathematical Programming,MP) 36
2.6.2 最佳化條件法(Optimum Criteria Method,OC) 37
2.7 小結 38
第三章 程式架構與設計 39
3.1 前言 39
3.2 有限元素軟體ABAQUS 39
3.3 曲面形狀最佳化程式架構 40
3.3.1 模型建立函式 41
3.3.2 材料性值及邊界條件設定函式 41
3.3.3 有限元素分析設定函式 41
3.3.4 最佳化分析函式及結果輸出 42
3.4 主應力線生成演算法程式架構 43
3.4.1 離散向量場內插與數值積分函式 44
3.4.2 主應力投影面拉升函式 44
3.5 尺寸最佳化程式架構 44
3.6 小結 45
第四章 平板案例探討 47
4.1 前言 47
4.2 載重與邊界條件差異探討 47
4.3 實際樓板加勁案例 53
4.3.1 主應力梁板系統 54
4.3.2 格柵版系統 56
4.3.3 最小版厚 57
4.3.4 斷面尺寸最佳化之題目定義 59
4.3.5 斷面尺寸最佳化結果比較 59
4.4 小結 62
第五章 自由曲面案例探討 63
5.1 前言 63
5.2 主應力線為加勁構材之連續曲面結構 63
5.3 主應力線之網柵離散結構 87
5.3.1 實際網柵薄殼結構設計 87
5.3.2 材料選定 87
5.3.3 設計限制 88
5.3.4 設計載重 91
5.4 風力模擬 92
5.4.1 計算流體力學分析 92
5.4.2 ABAQUS計算流體力學分析 92
5.5 實際網柵薄殼結構最佳化程式設計 98
5.6 例題分析 99
5.7 小結 133
第六章 結論與未來展望 135
6.1 結論 135
6.2 未來展望 137
參考文獻 138
簡歷 144
dc.language.isozh-TW
dc.subject薄殼網柵結構zh_TW
dc.subject有限元素套裝軟體zh_TW
dc.subject尺寸最佳化zh_TW
dc.subject計算流體力學zh_TW
dc.subject形狀最佳化zh_TW
dc.subject主應力線zh_TW
dc.subject結構最佳化zh_TW
dc.subject自由曲面zh_TW
dc.subjectPrincipal stress linesen
dc.subjectGrid shell structureen
dc.subjectThin shell structureen
dc.subjectComputational fluid dynamicen
dc.subjectSizing optimizationen
dc.subjectShape optimizationen
dc.subjectStructural optimizationen
dc.subjectFree-form surfaceen
dc.subjectParticle trajectoriesen
dc.subjectRibs layouten
dc.title主應力線應用於結構最佳化設計zh_TW
dc.titleApplication of Principal Stress Lines on Structural Optimization Designen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭世榮,宋裕祺,黃仲偉
dc.subject.keyword主應力線,自由曲面,結構最佳化,形狀最佳化,尺寸最佳化,計算流體力學,薄殼網柵結構,有限元素套裝軟體,zh_TW
dc.subject.keywordPrincipal stress lines,Ribs layout,Particle trajectories,Free-form surface,Structural optimization,Shape optimization,Sizing optimization,Computational fluid dynamic,Thin shell structure,Grid shell structure,en
dc.relation.page144
dc.identifier.doi10.6342/NTU201902476
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
12.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved