Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72479
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王佩華(Pei-Hwa Wang)
dc.contributor.authorPo-An Tuen
dc.contributor.author凃柏安zh_TW
dc.date.accessioned2021-06-17T06:59:41Z-
dc.date.available2019-08-15
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-03
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72479-
dc.description.abstract家畜禽遺傳保育之目的為維持有效族群大小、保存遺傳多樣性、遺傳資源及擴展本地原生種家畜禽之用途。早期用於鑑別動物品種及遺傳特徵之方法,主要是透過外觀形態上之表型鑑別,但無法有效應用於鑑別遺傳改進或是動物遺傳資源保存之目的。因此,以分子遺傳技術剖析個別動物體之遺傳特性並建立遺傳資訊庫,可用於家畜禽品種鑑別之用。本研究第一部分為建立臺灣黃牛及臺灣黑山羊族群分子遺傳特徵,並分析其與其他國內外不同牛羊品種之類緣關係。不同牛羊品種之遺傳多樣性及其地緣分布之差異,提供過去前人研究對於臺灣本地種牛羊族群之起源及遺傳關係之證據,並提供不同族群個體曾經被引進以控制特定族群近親效應之證據。這些基礎資訊可用於建立一個可靠的家畜禽遺傳保育計畫,更可延伸用於了解臺灣本地牛羊品種之起源及育種歷史。
重組聚合酶擴增反應(recombinase polymerase amplification, RPA)為一個高敏感性且高專一性的恆溫擴增技術,反應溫度於37至42˚C,且僅需要簡單的樣品處理便可進行擴增反應,可在20分鐘內偵測10個copies的DNA或RNA標的。本研究第二部分成功應用此技術放大及偵測不同常見動物疾病之標的,包含山羊關節炎腦炎(caprine arthritis-encephalitis virus, CAEV)、牛白血病(bovine leukemia virus, BLV)及家禽白血病J型(avian leukosis virus subgroup J, ALV-J);搭配側層流分析法(lateral flow dipstick, LFD)進行偵測,並與傳統現行主流疾病診斷方法進行比較。
家畜禽為國內重要且可更新之動物遺傳資源,容易受到自然環境及人為開發之影響。因此了解目前家畜禽之遺傳類緣關係對於育種管理極為重要。此外,農民也應對於常見之動物傳染性疾病之預防、診斷、控制及治療有簡易之瞭解,並與獸醫密切合作擬定及實施牧場之健康管理計畫;本研究所開發之RPA-LFD快速檢測技術可用於牧場簡易及快速診斷特定動物傳染性疾病,並提供良好之敏感性及特異性,適合現場快速診斷使用。此外,本平台更可進一步用於發展成為其他病原體及遺傳標幟之鑑別偵測,且僅需輕便易攜帶之基礎試驗設備。結合此二部分,可提升家畜禽飼養之農民及產業之生產力及建立更健康之種畜禽族群。
zh_TW
dc.description.abstractThe Genetic Preservation of Domestic Livestock was set to maintain an effective population size, preserve genetic diversity, genetic resources, and extend their utilization. In early times, characterizations of domestic livestock breeds were through observation of phenotypic heterogeneity, and could not justify accurately for the purpose of genetic improvement or to sustain the genetic resources preservation in Taiwan. The application of molecular genetics profiling provides advanced hereditary information for each individual, and thus enable us to better define the differences among livestock populations. The aim of this study was to characterize the current genetic structure of these Taiwan yellow cattle and Taiwan black goat populations, as well as to assess their phylogenetic relationship. The spatial distribution of the different breeds of cattle and goat populations and the high contribution of these populations to overall gene diversity supported the hypothesis that the present herd was derived from different genetic lineages that were incorporated to control the level of inbreeding. This information will be essential for establishing a reliable breeding and conservation plan and are also crucial for understanding the origin and breeding history of domestic cattle and goat breeds in Taiwan.
Recombinase polymerase amplification (RPA) is a highly sensitive and selective isothermal amplification technique, operating at 37-42˚C, with minimal sample preparation and capable of amplifying as low as 10 DNA or RNA target copies in about 20 min. We have used the technique to amplify diverse targets, including caprine arthritis-encephalitis virus (CAEV), bovine leukemia virus (BLV), and avian leukosis virus subgroup J (ALV-J) from a wide variety of target animals. Furthermore, different detection strategies integrated with RPA has been successfully performed using lateral flow strips detection. This study focuses on the comparison of different detection methodologies and targets related to RPA-LFD with other disease diagnostic technologies.
To sum up, livestock and poultry breeds are an important part of the biological genetic resources. They are renewable or changeable, and are influenced by the natural ecological environments and by social development. Understanding the origin and genetic phylogenetic relationship of domestic cattle and goat breeds are important for breeding management. Meanwhile, farmers and stockmen should know how to prevent, control and treat animal diseases through farm health planning and close working with vets. The developed RPA-LFD assays are simple and sensitive enough for point-of-care diagnostics. It also serves as a model platform that could be further adapted to detect other pathogens or genetic markers of interest using basic laboratory equipment. Animal husbandry would be better improved with more productive and healthy livestock and poultry in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:41Z (GMT). No. of bitstreams: 1
ntu-108-D02626009-1.pdf: 9846765 bytes, checksum: 62b5f6caf04ce478b64e4b52c159cd74 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAcknowledgement ii
中文摘要 iii
Abstract v
Content vii
List of Figures xiii
List of Tables xvi
1. Literature review 1
1.1 Genetic diversity and population structure for the yellow cattle in Taiwan 1
1.2 Genetic diversity and population structure of indigenous goat and their crossbred populations in Taiwan 3
1.3 Isothermal nucleic acid amplification 5
1.3.1 Nucleic acid sequence-based amplification (NASBA) 11
1.3.2 Exponential strand displacement amplification (E-SDA) 12
1.3.3 Exponential rolling circle amplification (E-RCA) 13
1.3.4 Loop-mediated isothermal amplification (LAMP) 14
1.3.5 Helicase-dependent amplification (HDA) 15
1.3.6 Recombinase polymerase amplification (RPA) 16
1.3.7 Exponential amplification reaction (EXPAR) 17
1.3.8 Whole genome amplification (WGA) 24
1.3.9 Emerging exponential isothermal amplification 25
1.4 Common animal diseases in Taiwan 28
1.4.1 Caprine arthritis-encephalitis virus 28
1.4.2 Bovine leukemia virus 29
1.4.3 Avian leukosis viruses 32
2. Materials and Methods 35
2.1 Experiment 1: Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers 35
2.1.1 Experiment animals and sample collection 35
2.1.2 Selection of the microsatellite marker panel and genotyping 36
2.1.3 Statistical analysis 36
2.2 Experiment 2: Microsatellite-based genetic diversity and population structure of indigenous goat and their crossbred populations in Taiwan 39
2.2.1 Breeds and sampling 39
2.2.2 Microsatellite typing 39
2.2.3 Statistical analysis 39
2.3 Experiment 3: Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection 42
2.3.1 Animal and blood samples 42
2.3.2 Serological CAEV diagnostic tests 42
2.3.3 Total DNA template preparation 42
2.3.4 Recombinant plasmid construction 43
2.3.5 Recombinase polymerase amplification primer and probe design 43
2.3.6 Recombinase polymerase amplification conditions and optimization 44
2.3.7 Lateral flow dipstick (LFD) assay 45
2.3.8 Molecular specificity of RPA-LFD 46
2.3.9 Evaluation of molecular sensitivity of RPA using LFD and AGE 46
2.3.10 Reliability and positive rate comparison of RPA-LFD with serological ELISA 46
2.4 Experiment 4: A recombinase polymerase amplification lateral flow dipstick for field diagnosis of bovine leukemia virus infection and its effectiveness compared to iiPCR and ELISA 48
2.4.1 Animal and blood samples 48
2.4.2 Total DNA template preparation 48
2.4.3 Recombinase polymerase amplification primer and probe design 48
2.4.4 Recombinant plasmid construction 49
2.4.5 RPA conditions and optimization 50
2.4.6 Lateral flow dipstick (LFD) assay 51
2.4.7 Serological BLV diagnostic tests 51
2.4.8 Molecular specificity of RPA-LFD 52
2.4.9 Evaluation of molecular sensitivity of RPA using LFD and AGE 52
2.4.10 Reliability and positive rate comparison of RPA-LFD, iiPCR, and serological ELISA 52
2.5 Experiment 5: Development of a recombinase polymerase amplification lateral flow dipstick for detection of avian leukosis virus subgroup J infection 53
2.5.1 Viruses and clinical samples 53
2.5.2 Proviral DNA extraction 53
2.5.3 Conventional routine PCR 53
2.5.4 Recombinase polymerase amplification primer and probe design 54
2.5.5 Recombinant plasmid construction 55
2.5.6 Recombinase polymerase amplification conditions and optimization 55
2.5.7 Lateral flow dipstick (LFD) assay for RPA product 56
2.5.8 Molecular specificity of RPA-LFD 57
2.5.9 Evaluation of molecular sensitivity of RPA using LFD and AGE 57
2.5.10 Reliability and positive rate comparison of RPA-LFD with conventional routine PCR 57
2.5.11 Amplification product sequencing 57
3. Results 59
3.1 Experiment 1: Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers 59
3.1.1 Genotype variation, heterozygosity, and F-statistic of microsatellite loci 59
3.1.2 Intra-population genetic variability and Hardy-Weinberg equilibrium test 63
3.1.3 Inter-population genetic variation 66
3.1.4 Population structure analysis 68
3.1.5 Clustering based on genetic distances, and population differentiation analysis 70
3.2 Experiment 2: Microsatellite-based genetic diversity and population structure of indigenous goat and their crossbred populations in Taiwan 73
3.2.1 Genetic variability at microsatellite loci 73
3.2.2 Genetic differentiation among populations 76
3.2.3 Admixture analysis 82
3.3 Experiment 3: Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection 86
3.3.1 Determination of the RPA-LFD conditions 86
3.3.2 Molecular specificity of RPA-LFD 88
3.3.3 Comparative molecular sensitivity of the RPA-AGE and the RPA-LFD assays 90
3.3.4 Reliability and positive rate comparison of the RPA-LFD assay with serological ELISA 93
3.4 Experiment 4: A recombinase polymerase amplification lateral flow dipstick for field diagnosis of bovine leukemia virus infection and its effectiveness compared to iiPCR and ELISA 95
3.4.1 Determination of the optimal RPA-LFD conditions 95
3.4.2 Molecular specificity of RPA-LFD 97
3.4.3 Comparative molecular sensitivity of the RPA-AGE and the RPA-LFD assays 99
3.4.4 Reliability and positive rate comparison of RPA-LFD, iiPCR, and serological ELISA 102
3.5 Experiment 5: Development of a recombinase polymerase amplification lateral flow dipstick for detection of avian leukosis virus subgroup J infection 105
3.5.1 Establishment of the RPA-LFD conditions 105
3.5.2 Molecular specificity of RPA-LFD 108
3.5.3 Comparative molecular sensitivity of the RPA-AGE and the RPA-LFD assays 108
3.5.4 Reliability and positive rate comparison of the RPA-LFD assay with conventional routine PCR 111
3.5.5 Sequencing amplification results 114
4. Discussion 115
4.1 Experiment 1: Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers 115
4.1.1 Genetic variation and diversity of intra-population 115
4.1.2 Genetic diversity and relationship of inter-population 117
4.2 Experiment 2: Microsatellite-based genetic diversity and population structure of indigenous goat and their crossbred populations in Taiwan 123
4.3 Experiment 3: Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection 127
4.4 Experiment 4: A recombinase polymerase amplification lateral flow dipstick for field diagnosis of bovine leukemia virus infection and its effectiveness compared to iiPCR and ELISA 132
4.5 Experiment 5: Development of a recombinase polymerase amplification lateral flow dipstick for detection of avian leukosis virus subgroup J infection 136
5. References 141
Appendix 169
dc.language.isoen
dc.title動物族群遺傳資訊之建立及以恆溫核酸擴增偵測平台應用於動物病毒性病原之快速診斷zh_TW
dc.titleThe establishment of animal population genetic information and the application of rapid nucleic acid detection platform for diagnosis of animal viral pathogensen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee林恩仲(En-Chung Lin),林德育(Der-Yuh Lin),蕭振文(Jen-Wen Shiau),張惠雯(Hui-Wen Chang)
dc.subject.keyword臺灣黃牛,臺灣黑山羊,遺傳類緣分析,恆溫核酸擴增,快速疾病診斷,zh_TW
dc.subject.keywordTaiwan yellow cattle,Taiwan black goat,phylogenetic analysis,isothermal nucleic acid amplification,rapid disease diagnosis,en
dc.relation.page219
dc.identifier.doi10.6342/NTU201902496
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:動物科學技術學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
9.62 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved