Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏溪成
dc.contributor.authorYi-Sin Chouen
dc.contributor.author周宜欣zh_TW
dc.date.accessioned2021-06-17T06:59:18Z-
dc.date.available2029-12-31
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citationEPRI, 2010, Electric Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits.
Carnegie, R., Gotham, D., Nderitu, D., Preckel, P. V., 2013, Utility Scale Energy Storage Systems, Benefits, Applications, and Technologies, State Utility Forecasting Group.
周宜欣、鄭俊才、許寧逸、魏華洲、黃文松、林金福,2015,化工會刊 第62卷第3期,p.129-141。
李宏仲、段建民、王承民,2012,智能電網中蓄電池儲能技術及其價值評估,第204頁,機械工業出版社,北京。
Ha, S. and Gallagher, K. G., 2015, Estimating the system price of redox flow batteries for grid storage, Journal of Power Sources, 296, p. 122-132.
Arenas, L.F., Ponce de León, C., Walsh, F.C., 2017, Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage, Journal of Energy Storage, 11, p. 119-153.
EnerVault Corperation, 2015, Demonstration of Enervault Iron-chromium Redox Flow Battery.
Cunha, Á., Martins, J., Rodrigues, N., Brito, F. P., 2014, Vanadium redox flow batteries: a technology review, International Journal of Energy Research, 39, p. 889-918.
Pellegri, A. and Broman, B.M., 2002, Redox flow battery system and cell stack, Squirrel Holdings Ltd, US Patent 6,475,661 B1.
Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., Liu, Q., 2011, Redox flow batteries: A review, Journal of Applied Electrochemistry, 41, p. 1137-1164.
Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., Liu, J., 2011, Electrochemical energy storage for green grid, Chemical Reviews, 111, p. 3577-3613.
Soloveichik, G.L., 2015, Flow batteries: Current status and trends, Chemical Reviews, 115, p. 11533-11558.
Perry, M.L., Weber, A.Z., 2016, Advanced redox-flow batteries: A perspective, Journal of The Electrochemical Society, 163, p. A5064-A5067.
Pezeshki, A.M., Sacci, R.L., Delnick, F.M., Aaron, D.S., Mench, M.M., 2017, Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries, Electrochimica Acta, 229, p. 261-270.
Wang, W., Luo, Q., Li, B., Wei, X., Li, L., Yang, Z., 2013, Recent progress in redox flow battery research and development, Adv. Funct. Mater. 23, p. 970-986.
IEA, 2014, Energy Storage Technology Roadmap, Technology Annex, 15.
Yang, Z. G., 2014, New Generation VRFB for Electrical Grid and Utility Applications, UniEnergy Technologies.
Barnes, F. S.、Levine, J. G.等著,肖曦、聶贊相等譯,2013,大規模儲能技術,第146-149頁,機械工業出版社,北京。
吳佳梁、曾贛生、余鐵輝,2013,風光互補與儲能系統,第63頁,化學工業出版社,北京。
Ke, X., Prahl, J.M., Alexander, J.I.D., Savinell, R.F., 2017, Mathematical modeling of electrolyte flow in a segment of flow channel over porous electrode layered system in vanadium flow battery with flow field design, Electrochimica Acta, 223, p. 124-134.
Bamgbopa, M.O., Pour, N., Shao-Horn, Y., Almheiri, S., 2017, Systematic selection of solvent mixtures for non-aqueous redox flow batteries–vanadium acetylacetonate as a model system, Electrochimica Acta, 223, p. 115-123.
Elgammal, R.A., Tang, Z., Sun, C.N., Lawton, J., Zawodzinski Jr., T.A., 2017, Species uptake and mass transport in membranes for vanadium redox flow batteries, Electrochimica Acta, 237, p. 1-11.
Dai, L., Jiang, Y., Meng, W., Zhou, H., Wang, L., He, Z., 2017, Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation, Applied Surface Science, 401, p. 106-113.
Di Blasi, A., Busacca, C., Di Blasi, O., Briguglio, N., Squadrito, Antonucci, G. V., 2017, Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application, Applied Energy, 190, p. 165-171.
Gonzalez, Z., Flox, C., Blanco, C., Granda, M., Morante, J.R., Menendez, R., Santamaría, R., 2017, Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application, Journal of Power Sources, 338, p. 155-162.
Bhattarai, A., Wai, N., Schweiss, R., Whitehead, A., Lim, T.M., Hng, H.H., 2017, Advanced porous electrodes with flow channels for vanadium redox flow battery, Journal of Power Sources, 341, p. 83-90.
Kabtamu, D.M., Chen, J.Y., Chang, Y.C., Wang, C.H., 2017, Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, 341, p. 270-279.
Kabir, H., Gyan, I.O., Cheng, I.F., 2017, Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery, Journal of Power Sources, 342, p. 31-37.
Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H., Yang, J.H., Kim, H.T., 2017, A review of vanadium electrolytes for vanadium redox flow batteries, Renewable & Sustainable Energy Reviews, 69, p. 263-274.
Ding, C., Ni, X., Li, X., Xi, X., Han, X., Bao, X., Zhang, H., 2015, Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries, Electrochimica Acta, 164, p. 307-314.
Nam, S., Lee, D., Lee, D.G., Kim, J., 2017, Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB), Composite Structures, 159, p. 220-227.
Li, W., Liu, J., Yan, C., 2011, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery, Carbon, 49, p. 3463-3470.
He, Z., Jiang, Y., Zhou, H., Cheng, G., Meng, W., Wang, L., Dai, L., 2016, Graphite felt electrode modified by square wave potential pulse for vanadium redox flow battery, International Journal of Energy Research, 41, p. 439-447.
He, Z., Dai, L., Liu, S., Wang, L., Li, C., 2015, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176, p. 1434-1440.
Perry, M.L., Darling, R.M., Zaffou, R., 2013, High power density redox flow battery cells, ECS Transactions, 53, p. 7-16.
Goulet, M.A., Skyllas-Kazacos, M., Kjeang, E., 2016, The importance of wetting in carbon paper electrodes for vanadium redox reactions, Carbon, 101, p. 390-398.
Sun, B. and Skyllas-Kazacos, M., 1992, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica Acta, 37, p. 1253-1260.
Wu, X., Xu, H., Xu, P., Shen, Y., Lu, L., Shi, J., Fu, J., Zhao, H., 2014, Microwave-treated graphite felt as the positive electrode for all vanadium redox flow battery, Journal of Power Sources, 263, p. 104-109.
Liu, H., Xu, Q., Yan, C., Qiao, Y., 2011, Corrosion behavior of a positive graphite electrode in vanadium redox flow battery, Electrochimica Acta, 56, p. 8783-8790.
Liu, H., Yang, L., Xu, Q., Yan, C., 2014, An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(II)/V(III) and V(IV)/V(V) couples in a vanadium redox flow battery, RSC Advances, 4, p. 55666-55670.
Zhang, W., Xi, J., Li, Z., Zhou, H., Liu, L., Wu, Z., Qiu, X., 2013, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89, p. 429-435.
Gao, C., Wang, N., Peng, S., Liu, S., Lei, Y., Liang, X., Zeng, S., Zi, H., 2013, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88, p. 193-202.
Kim, H.S., 2011, Electrochemical properties of graphite-based electrodes for redox flow batteries, Bulletin of the Korean Chemical Society, 32, p. 571-575.
Wang, W.H. and Wang, X.D., 2007, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta, 52, p. 6755-6762.
Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., Liu, J., 2011, Electrochemical energy storage for green grid, Chemical Reviews, 111, p. 3577-3613.
Llobet, E., 2013, Gas sensors using carbon nanomaterials: A review, Sensors and Actuators B: Chemical, 179, p. 32-45.
Tang, Z, Aaron, D. S., Papandrew, A. B., Zawodzinski Jr, T. A. 2012, Monitoring the state of charge of operating vanadium redox flow batteries, ECS Trans, 41, p. 1-9.
Skyllas-Kazacos, M. and Kazacos, M., 2011, State of charge monitoring methods for vanadium redox flow battery control, Journal of Power Sources, 196, p. 8822- 8827.
Knehr, K. W. and Kumbur, E. C., 2011, Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments, Electrochem Commun, 13, p. 342-345.
Xiong, B., Zhao, J., Wei, Z., Skyllas-Kazacos, M., 2014, Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model, J Power Sources, 262, p. 50-61.
Ngamsai, K. and Arpornwichanop, A., 2015, Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device, Journal of Power Source, 298, p. 150-157.
Rudolph, S., Schröder, U., Bayanov, I. M., 2013, On-line controlled state of charge rebalancing in vanadium redox flow battery, Journal of Electroanalytical Chemistry, 703, 29-37.
Voleišien, B. and Voleišis, A., 2008, Ultrasound velocity measurements in liquid media, Ultragarsas (Ultrasound), 63, p. 7-19.
Rodriguez-Molares, A., Howard, C., Zander, A., 2014, Determination of biomass concentration by measurement of ultrasonic attenuation, Applied Acoustics, 81, 26-30.
Liu, L., 2009, Application of ultrasound spectroscopy for nanoparticle sizing in high concentration suspensions: A factor analysis on the effects of concentration and frequency, Chemical Engineering Science, 64, p. 5036-5042.
Van Sint Jan, M., Guarini, M., Guesalaga, A., Pérez-Correa, J. R., Vargas, Y., 2008, Ultrasound based measurements of sugar and ethanol concentrations in hydroalcoholic solutions, Food Control, 19, 31-35.
Sung, C. C., Tseng, Y. L., Chiang, Y. F., Chen, C. Y., 2010, Evaluation of ultrasonic sensing of methanol concentration for direct methanol fuel cell, Sensors and Actuators A: Physical, 161, p. 101-107.
Rabinovich, A. and Thlimieri, D., 2001, Ultrasound sensing of concentration of methanol's aqueous solution, US Patent 6,748,793.
Dey, R. and Harshavardhan, A., 2014, A comparative study of ultrasonic velocities of binary and multicomponent liquid mixtures at 298.15 K, Journal of Energy & Chemical Engineering, 2, p. 1-7.
Narendra, K., Sudhamsa, B., Sarath Babu, M., 2014, Theoretical evaluation of speeds of sound in liquid mixtures containing diethyl carbonate and aniline at various temperatures, Research Journal of Chemical Sciences, 4, p. 42-45.
Hsieh, A. G., Bhadra, S., Hertzberg, B. J., Gjeltema, P. J., Goy, A., Fleischer, J. W., Steingart, D. A., 2015, Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health, Energy & Environmental Science, 8, p. 1569-1577.
Bhadra, S., Hsieh, A. G., Wang, M. J., Hertzberg, B. J., Steingart, D. A., 2016, Anode characterization in zinc-manganese dioxide AA alkaline batteries using electrochemical-acoustic time-of-flight analysis, Journal of The Electrochemical Society, 163, 6, p. A1050-A1056.
Park, S., Shim,J., Yang, J., Jin, C., Lee, B., Lee, Y., Shin, K., Jeon, J., 2014, The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery, Electrochimica Acta, 116, p. 447-452.
Shah, A.A., Watt-Smith, M.J., Walsh, F.C., 2008, A dynamic performance model for redox-flow batteries involving soluble species, Electrochimica Acta, 53, p.8087-8100.
You, D., Zhang, H., Chen, J., 2009, A simple model for the vanadium redox battery, Electrochimica Acta, 54, p. 6827-6836.
Shah, A.A., Tangirala, R., Singh, R., Wills, R.G.A., Walsh, F.C., 2011, A dynamic unit cell model for the all-vanadium flow battery, Journal of The Electrochemical Society, 158, p. A671-A677.
Yu, V. and Dongmei, C., 2013, Dynamic Model of a Vanadium Redox Flow Battery for System Performance Control, Journal of Solar Energy Engineering, 136, 021005-7 pages.
Knehr, K.W., Agar, E., Dennison, C.R., Kalidindi, R., Kumbur, E.C., 2012, A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and water Transport through the Membrane, Journal of The Electrochemical Society, 159, p. A1446-A1459.
Newman, J and Thomas-Alyea, E., 2004, Electrochemical Systems, 3rd Edition, John Wiley & Son, Inc., Canada.
AEI, 2006, Murata’s methanol concentration sensors fuel DMFC use in mobile, Dempa Publications, Inc.
Boettcher, P. A., Agar, E., Dennison, C. R., Caglan Kumbur, E., 2016, Modeling of ion crossover in vanadium redox flow batteries: a computationally-efficient lumped parameter approach for extended cycling, Journal of The Electrochemical Society, 163, p. A5244-A5252.
Xi, J., Wu, Z., Teng, X., Zhao, Y., Chen, L., Qiu, X., 2008, Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries, Journal of Materials Chemistry, 48, p. 24959-25506.
Pourcelly, G., Lindheimer, A., Gavach, C., Hurwitz, H. D., 1991, Electrical transport of sulphuric acid in nation perfluorosulphonic membranes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, p.97-113.
Verbrugge, M. W. and Hill, R. F., 1990, Ion and Solvent Transport in Ion-Exchange Membranes: II . A Radiotracer Study of the Sulfuric-Acid, Nation-117 System, Journal of The Electrochemical Society, 137, p. 893-899.
Yamamura, T., Watanabe, N., Yano, T., Shiokawa, Y., 2005, Electron-Transfer Kinetics of Np3+∕Np4+, NpO2+∕NpO22+, V2+∕V3+, and VO2+∕VO2+ at Carbon Electrodes, Journal of The Electrochemical Society, 152, p. A830-836.
Tazi, B. and Savadogo, O., 2000, Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene, Electrochimica Acta, 45, p. 4329-4339.
Chang, Y.C., Shih, Y.C., Chen, J.Y., Lin, G.Y., Hsu, N.Y., Chou, Y.S., Wang, C.H., 2016, High efficiency of bamboo-like carbon nanotubes on functionalized graphite felt as electrode in vanadium redox flow battery, RSC Advances, 6, p. 102068-102075.
Lee, H.J., Kil, D., Kim, H., 2016, Synthesis of activated graphite felt using consecutive post-treatments for vanadium redox flow batteries, Journal of The Electrochemical Society, 163, p. A2586-A2591.
Bard, A.J. and Faulkner, L.R., 1980, Electrochemical methods and applications, 3rd Edition, John Wiley & Sons, New York.
Maitra, T., Sharma, S., Srivastava, A., Cho, Y., Madou, M., Sharma A., 2012, Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning, Carbon, 50, p. 1753-1761.
Wei, G., Su, W., Wei, Z., Jing, M., Fan, X., Liu, J., Yan, C., 2016, Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards VO2+/VO2+ redox couple, Electrochimica Acta, 199, p. 147-153.
Samadian, H., Mobasheri, H., Hasanpour, S., Majidi, R.F., 2017, Electrospinning of polyacrylonitrile nanofibers and simulation of electric field via finite element method, Nanomedicine Research Journal, 2, p. 87-92.
Oriji, G., Katayama, Y., Miura, T., 2005, Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods, Journal of Power Sources, 139, p. 321-324.
Kim, S., Thomsen, E., Xia, G., Nie, Z., Bao, J., Recknagle, K., Wang, W., Viswanathan, V., Luo, X. Wei, Q., Crawford, A., Coffey, G., Maupin, G., Sprenkle, V., 2013, 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes, Journal of Power Sources, 237, p. 300-309.
He, Z., Liu, J., Han, H., Chen, Y., Zhou, Z., Zheng, S., Lu, W., Liu, S., He, Z., 2013, Effects of organic additives containing -NH2 and -SO3H on electrochemical properties of vanadium redox flow battery, Electrochimica Acta, 106, p. 556-562.
Bockris, J.O'M. and Jeng, K.T., 1990, Water structure at interfaces: the present situation, Advances in Colloid and Interface Science, 33, p. 1-54.
Gattrell, M., Park, J., MacDougall, B., Apte, J., McCarthy, S., Wu, C.W., 2004, Study of the mechanism of the vanadium 4+/5+ redox reaction in acidic solutions, Journal of The Electrochemical Society, 151, p. A123-A130.
Wang, W., Fan, X., Liu, J., Yan, C., Zeng, C., 2014, A novel mechanism for the oxidation reaction of VO2+ on a graphite electrode in acidic solutions, Journal of Power Sources, 261, p. 212-220.
Wang, W., Wei, Z., Su, W., Fana, X., Liu, J., Yan, C., Zeng, C., 2016, Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes, Electrochimica Acta, 205, p. 102-112.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72446-
dc.description.abstract全釩液流電池(vanadium redox flow battery, VRFB)為一種具發展潛力之電能存儲裝置,特別適用於搭配間歇式再生能源,強化綠能應用性。本論文之研究內容分成三部分,施以創新改質技術,納菲離子聚合物溶液(Nafion® ionomer solution)含浸改質石墨氈(graphite felt, GF),有效改善石墨氈電極的親水性,Nafion®離子聚合物與GF重量比為0.9之NGF N90電極,置於VRFB電解液可達完全潤濕,並具良好電化學反應性能,能量效率高達73.08 %,放電容量為2.015 Ah。經30次充放電循環後,衰退率僅約3 %。
針對監測VRFB充電狀態(state of charge, SOC),提出新穎的超音波速度傳感測定模式,使用2 M硫酸配置釩離子電解液,於不同電解質濃度,測量感測超音波速度值與操作溫度和濃度之關係。於10~90 % SOC範圍,超音波速度之實驗量測值與經驗方程式預估值十分吻合,誤差僅±2 %。
開發數學模型描述VRFB三維多孔電極之電池反應與釩離子交叉混和效應,對比電池充電曲線之模擬數值與實驗數據,充電階段於10~80 % SOC,實驗電壓值相對於模擬值僅0.324 %誤差,驗證模擬結果之優異擬真性。模擬結果推定於80 % SOC,V(III)與V(IV)離子濃度量值上升為無擴散混和效應之1.08與1.29倍。
zh_TW
dc.description.abstractVanadium redox flow battery (VRFB) is a promising electrical energy storage device, particularly for use with intermittent-type renewable energies. The content of this thesis is divided into three parts. A new modification approach by impregnation with a Nafion® ionomer solution significantly improves the wettability and substantially enhances the activity of the graphite felt (GF) electrode. The NGF N90 electrode with a weight ratio of Nafion® ionomer/GF = 0.9 is fully wetted in the electrolyte solution and exhibits good performance. The energy efficiency is as high as 73.08% and the discharge capacity is about 2.015 Ah. It decays only about 3% after 30 charge-discharge cycles in operation.
A novel ultrasonic velocity sensing approach is proposed and investigated to monitor the state of charge (SOC) of VRFB. The vanadium ion solutions are prepared in 2 M H2SO4 aqueous solution. Their ultrasound velocities measured in the electrolyte solutions are found to be both temperature- and concentration-dependent. A master model equation fits the experimental results of both charging and discharging stages quite well within the SOC range of 10~90 % with ±2 % errors with respect to the predicted values.
A 3D isothermal model for VRFB is developed. The redox reactions in a porous electrode are formulated. The simulated battery charging curve is compared with the experimental results within the SOC range of 10~80% with 0.324 % errors with respect to the predicted values. The numerical result is validated against the experiment data. The simulation results indicate that the vanadium ion cross-mixing effect is significant at higher SOC. With vanadium crossover effects, the concentration of V(III) and V(IV) ions are increased to 1.08 and 1.29 times at 80 % SOC.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:18Z (GMT). No. of bitstreams: 1
ntu-108-D04524009-1.pdf: 7203543 bytes, checksum: c6f682687503f9b3061f2f29962cdf8d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝…… i
摘要…… ii
Abstract.. iii
目錄…… iv
圖目錄… vii
表目錄… xi
第一章 緒論 1
1-1大型儲能電池系統發展契機 1
1-2液流電池系統介紹 3
1-2-1提升液流電池系統之運轉規格 3
1-2-2液流電池系統之電解液配送模式 4
1-3全釩液流電池vs. 鋰離子電池 5
第二章 文獻回顧 13
2-1全釩液流電池之性能增進策略 13
2-2 石墨氈電極改質 13
2-3液流電池充電狀態之量測 14
2-4液流電池之模擬分析 15
第三章 電化學理論回顧 18
3-1 熱力學與電位 18
3-2 電極動力學 21
3-3 電化學之物質輸送現象 24
第四章 操作方法與設備 28
4-1製備全釩液流電池之電解液 28
4-2石墨氈電極改質方法 28
4-3石墨氈電極之特質分析方法 28
4-4改質石墨氈電極之VRFB單電池測試 29
4-5超音波速度量測裝置 29
4-6模擬理論模型設計 30
4-6-1統御方程式 31
4-6-2邊界條件 32
4-6-3電池電壓估算 32
第五章 實驗結果與討論 43
5-1改質石墨氈電極之表面特徵 43
5-2改質石墨氈電極之反應特性分析 43
5-2-1循環伏安法 43
5-2-2 SEM分析 44
5-2-3 FTIR分析 45
5-2-4 XPS分析 45
5-2-5拉曼光譜分析 45
5-3石墨氈電極動力學分析 46
5-4石墨氈電極應用於VRFB單電池性能 48
5-5 VRFB反應機制於Nafion®處理石墨氈電極 49
5-6電解質之超音波速度感測 50
5-6-1硫酸溶液之超音波速度感測 50
5-6-2單一釩離子電解液之超音波速度感測 50
5-7超音波速度測定VRFB SOC 50
5-7-1超音波速度即時測定VRFB SOC 50
5-7-2 SOC模型建立 51
5-8 VRFB系統之充電現象模擬 53
5-8-1模型驗證 53
5-8-2電位分布 53
5-8-3釩離子濃度分布與釩離子交互混合 53
第六章 結論 97
符號標記 99
參考文獻 101
個人簡歷 109
dc.language.isozh-TW
dc.title全釩液流電池之電極改質與充電狀態感測及系統模擬研究zh_TW
dc.titleThe Study of Modified Felt Electrodes with Sensing State of Charge and System Simulation for Vanadium Redox Flow Batteriesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳延平,何國川,王大銘,周偉龍,吳永富
dc.subject.keyword全釩液流電池,石墨氈電極,電極改質,超音波速度,充電狀態,交互混合,電位分布,zh_TW
dc.subject.keywordVanadium redox flow battery,Graphite felt electrode,Electrode modification,Ultrasonic velocity sensing,State of charge,Crossover,Potential distribution,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201902406
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved