請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72424完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王東美(Tong-Mei Wang) | |
| dc.contributor.author | Hsiao-Yu Chen | en |
| dc.contributor.author | 陳孝宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:41:43Z | - |
| dc.date.available | 2023-10-03 | |
| dc.date.copyright | 2018-10-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | [1] 衛生福利部(2016/08)。104年國人死因統計結果。取自http://www.mohw.gov.tw/news/572256044
[2] Miloro M, Ghali G, Larsen P, Waite P. Peterson's Principles of Oral and Maxillofacial Surgery. 3rd ed: Pmph usa; 2011. P617-58, 783-802 [3] Jereczek-Fossa BA, Orecchia R. Radiotherapy-induced mandibular bone complications. Cancer Treat Rev 2002;28:65-74. [4] Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 2014; 72: 1938–56. [5] Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005;63:1567-75. [6] Barttelbort SW, Ariyan S. Mandible preservation with oral cavity carcinoma: rim mandibulectomy versus sagittal mandibulectomy. Am J Surg 1993;166:411-5. [7] Qiu Y, Lin L, Shi B, Zhu X. Does different mandibulectomy (marginal vs segmental) affect the prognosis in patients with oral squamous cell carcinoma?. J Oral Maxillofac Surg 2018 May;76:1117-22. [8] Koshy JC, Feldman EM, Chike-Obi CJ, Bullocks JM. Pearls of mandibular trauma management. Semin Plast Surg 2010;24:357-74. [9] 黃懿萱(2016):下顎骨邊緣切除手術後之骨折預防功效---有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文 [10] Yadav RR, Yadav AR, Dhund PV. Fracture mandible. New Delhi: Jaypee Brothers; 2012. [11] Wang TM, Chang HH, Ho Y, Lin LD. Screw hole-positioning guide and plate-positioning guide: A novel method to assist mandibular reconstruction. J Dent Sci 2012;7:301-5. [12] Dempster WT. The adaptive chin. By E. Lloyd DuBrul and Harry Sicher. Am J Phys Anthropol 1956;14:119-20 [13] Hylander WL. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol 1984;64:1-46. [14] Mosby’s medical dictionary. 8th ed. St. Louis: Mosby Elsevier; 2009 [15] Bowman A. Flexion of the mandible: Indiana University, School of Dentistry, Indianapolis; 1970. [16] Burch JG, Borchers G. Method for study of mandibular arch width change. J Dent Res 1970;49:463. [17] Chen DC, Lai YL, Chi LY, Lee SY. Contributing factors of mandibular deformation during mouth opening. J Dent 2000;28:583-8. [18] Abdel-Latif HH, Hobkirk JA, Kelleway JP. Functional mandibular deformation in edentulous subjects treated with dental implants. Int J Prosthodont 2000;13:513-9. [19] El-Sheikh AM, Abdel-Latif HH, Howell PG, Hobkirk JA. Midline mandibular deformation during nonmasticatory functional movements in edentulous subjects with dental implants. Int J Oral Maxillofac Implants 2007;22:243-8. [20] Regli CP, Kelly EK. The phenomenon of decreased mandibular arch width in opening movements. J Prosthet Dent 1967;17:49-53. [21] Canabarro Sde A, Shinkai RS. Medial mandibular flexure and maximum occlusal force in dentate adults. Int J Prosthodont 2006;19:177-82. [22] Ying T, Dong Mei W, Tong J, Cheng Tao W, Chen Ping Z. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. Journal of Cranio-Maxillofacial Surgery 2006; 34:290-8. [23] Murakami K, Sugiura T, Yamamoto K, Kawakami M, Kang YB, Tsutsumi S, Kirita T. Biomechanical analysis of the strength of the mandible after marginal resection. Oral Maxillofac Surg 2011 Jun;69:1798-806 [24] Kazuhiro M, Kazuhiko Y, Motokatsu Ti, Tsutomu S, Sadami T, and Tadaaki K. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. Journal of Oral and Maxillofacial Surgery 2014; 72: 833.e1-18 [25] O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57. [26] Chung DH, Buessem WR. The elastic anisotropy of crystals in: Vahldiek FW MS, editor. Anisotropy in Single-Crystal Refractory Compounds. New York: Plenum Press 1968. p. 217-45. [27] Katz JL, Meunier A. The elastic anisotropy of bone. J Biomech 1987;20:1063-70. [28] Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 1992;88:69-96. [29] Baron P, Debussy T. A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol 1979;24:547-53. [30] Nelson GJ. Three dimensional computer modeling of human mandibular biomechanics [M.Sc.]. Vancouver: University of British Columbia; 1986 [31] Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res 1994;73:56-66. [32] Al-Sukhun J, Kelleway J. Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants. Int J Oral Maxillofac Implants 2007;22:455-66. [33] Murakami K, Yamamoto K, Tsuyuki M, Sugiura T, Tsutsumi S, Kirita T. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg 2014;72:833 e1-18. [34] Lovald ST, Khraishi T, Wagner J, Baack B, Kelly J, Wood J. Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. J Biomech Eng 2006;128:654-62. [35] Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987;2:73-85. [36] Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101. [37] Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-71. [38] Biewener AA. Safety factors in bone strength. Calcif Tissue Int 1993;53:S68-74. [39] Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 1996;29:69-79. [40] Al-Sukhun J. Modelling of mandibular functional deformation [Ph.D.]. London: University College London (University of London); 2003. [41] Koole P, de Jongh HJ, Boering G. A comparative study of electromyograms of the masseter, temporalis, and anterior digastric muscles obtained by surface and intramuscular electrodes: raw-EMG. Cranio 1991;9:228-40. [42] Woelfel JB, Scheid RC. Dental Anatomy: Its Relevance to Dentistry. Sixth ed: LWW; 2002. p97 [43] Udupikrishna J, Manju K. Comparison of stability of fracture segments in mandible fracture treated with different designs of mini-plates using FEM analysis. J. Maxillofac. Oral Surg 2014;13:310-19. [44] Ertem SY, Uckan S, Ozden UA. The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis. J Craniomaxillofac Surg 2013;41:54-8. [45] Curtis DA, Plesh O, Hannam AG, Sharma A, Curtis TA. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J Prosthet Dent 1999;81:167-73. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72424 | - |
| dc.description.abstract | 臨床上,下顎骨邊緣切除術與部分切除術一直是以10mm的殘餘骨高為分界,但此分界點僅立基於一個體外的乾下顎骨實驗。施行邊緣切除術後的下顎骨若以金屬板加強,通常使用由切除區前到後連續的鈦金屬板,但鈦金屬板的彎折費力且費時、客製化又昂貴。本研究之目的在以三維有限元素模型分析下顎骨大範圍邊緣切除術後殘餘骨高度對術後下顎骨應變分佈的影響,並且探討以連續或不連續金屬板對術後下顎骨加強以防止骨折的效果。本實驗將電腦斷層掃描影像輸入ABAQUS 6.13-2建立下顎骨模型,選擇術後所受應變最大的大臼齒區大範圍(48mm)切除區作為實驗對象,在模型上切割出八種殘餘下顎骨高(22.5mm、20.0mm、17.5mm、15.0mm、12.5mm、10.0mm、7.5mm、5.0mm),並且裝設不同厚度(1.5mm、2.0mm、2.5mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm)的連續或不連續金屬板與螺絲。將下顎骨模型的海綿骨與螺絲以十節點之四面體元素、皮質骨與金屬板以三節點之三角形殼元素網格化之後,以ABAQUS 6.13-2求解。研究分為三個部分:第一部分將最大開口時第一小臼齒位置的下顎骨彎曲量與文獻做比較,以探討此下顎骨模型及材料特性、邊界條件、荷載等參數設定之合理性
;第二部分為分析在右大臼齒咬合時,左側大臼齒大範圍切除區所受之最大拉應變與最大壓應變的位置及數值大小,並分別以3000 microstrain與4000 microstrain的應變門檻探討其骨折風險;第三部分承接第二部分,在同樣的切除區及咬合型態,分析裝設連續或不連續金屬板與螺絲的術後下顎骨最大拉應變與最大壓應變的位置及數值大小,並分別以3000 microstrain與4000 microstrain的應變門檻探討其預防下顎骨骨折的效果。 結果:(1)在最大開口時,兩側下顎骨體上緣互相靠近,越往髁頭處靠近的量越多;下緣則是在前面先擴張,往後再逐漸靠近。第一小臼齒位置的下顎骨彎曲量為2.2μm,與文獻數值比較結果在合理的範圍,確認此有限元素模型之設定合理。(2)右大臼齒咬合時,左側大臼齒大範圍切除區若殘餘骨高越少則應變值越大,所有組別皆無法避免骨微損傷出現而開始有骨折風險。(3)裝設金屬板可以將切除區的最大拉應變及最大壓應變值均降低,金屬板越厚,應變值降低的量越多。裝設任一種形式的金屬板後,最大壓應變值均降低到4000 microstrain以下。在骨脊越低的情況下,裝設不連續金屬板比起連續金屬板可使最大拉應變值降低更多,但即使將不連續金屬板的厚度增加到5.0mm,仍無法使最大拉應變值降低到3000 microstrain以下。 本研究顯示:下顎骨大範圍邊緣切除術後,無論殘餘下顎骨脊高度為何,皆會有骨微損傷產生。裝設金屬板與螺絲可強化並使邊緣切除術後下顎骨的應變值降低,但仍無法預防骨折。 | zh_TW |
| dc.description.abstract | Clinically, surgeons follow a rule of 10 mm to decide whether to perform marginal mandibulectomy or segmental mandibulectomy. However, this rule was based on an experiment performed on a dry mandible with two condyle heads fixed in the cement. Traditionally, reconstruction plates of mandible are bridging two ends of the defect area to reinforce the resected mandible. It takes time and efforts to manually bend a ready-made reconstruction plate to make it fit the contour of the resected mandible, whereas it’s expensive to order a custom-made reconstruction plate. The aim of this study was using three-dimensional finite element analysis to investigate the stain distribution on mandible after extensive marginal mandibulectomy and to investigate the effect of fracture prevention of the continuous reconstruction plate and the separate mini-plates.
A basic solid model of mandible was built from CT image and imported into ABAQUS 6.13-2 software. The experimental models were set as left extensive resected area (48mm) under the occlusal scheme of right molar biting. Eight groups of residual bone height (5.0, 7.5, 10.0, 12.5, 15.0,17.5,20.0 and 15.0 mm) were investigated. A continuous reconstruction plate or two separate mini-plates were fixed to one of the resected mandibles with eight screws. In the mandible model, cancellous bone part and screw parts were meshed with ten-node tetrahedral elements, and cortical bone part and plate parts were meshed with three-node triangular shell elements. The solutions were performed by ABAQUS 6.13-2 software. The study includes three parts. Part I. The finite element model was verified by comparing the volume of mandibular flexure between bilateral first premolars with data in the literature while maximum mouth opening. Part II. The maximum tensile strain and compressive strain were evaluated on extensive defect during molar biting on the contralateral side. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the fracture risk of the resected mandibles. Part III. The maximum tensile and compressive strain on extensive defect site which was reinforced with a continuous reconstruction plate or two separate mini-plates were evaluated. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the effect of fracture prevention. Results: (1) When the mandible was under the conditions of maximum mouth opening, the upper border of the bilateral mandibular bodies came close to each other. The amount of closure was the largest between two condyle heads. While observing the lower border, the bilateral mandibular bodies became far from each other at the anterior region and close to each other at the posterior region. The amount of closure due to mandibular flexure over bilateral first premolars was 2.2 μm. The data coincided to the literature. (2) While the residual ridge height was lesser, the stain became larger on the left extensive defect site during right molar biting. The risk of bone fracture couldn’t be avoided in all groups. (3) The maximum tensile and compressive strain decreased after plate reinforcement. The thicker the plate was, the better the effectiveness. On both continuous and separated plate design, maximum compressive strain decreased beyond 4000 microstrain. If the ridge height was limited (5.0mm and 7.5mm ), separated plate performed better than continuous plate on maximum tensile strain. However, the maximum tensile strain was higher than 3000 microstrain persistently. The study suggested that after extensive marginal mandibulectomy, the bone fracture risk existed no matter what the residual ridge height was. Plate reinforcement decreased the strain, but fracture cannot be effectively prevented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:41:43Z (GMT). No. of bitstreams: 1 ntu-107-R03422022-1.pdf: 8112005 bytes, checksum: 533ce5ef5fc4ef762ac046ab97b58910 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書...................... i
誌謝 ........................................ ii 中文摘要 ........................................................................ iii 英文摘要 ...........................................................................v 目錄頁 .................................................... vii 表目錄 ................................................................. ix 圖目錄 ............................................................x 第一章 緒論 ....................................1 1-1 前言 ............................................1 1-2 文獻回顧...............................................................4 1-2-1 下顎骨切除術(mandibulectomy) .......................................................4 1-2-2 下顎骨彎曲(mandibular flexure) .................................................6 1-2-3 有限元素分析應用於人類下顎骨 .......................................................7 1-2-4 材料特性(material properties) .................................................................8 1-2-5 荷載(load).......................................................................................9 1-2-6 邊界條件(boundary condition) ..........................................................11 1-2-7 驗證(verification) ..............................................................................12 1-2-8 在有限元素分析中如何定義骨折(bone fracture).......................................13 1-3 研究動機與目的........................................................................14 第二章 前期實驗 ...............................................................16 2-1 目的 .................................................................................16 2-2 實驗主要設備.................................................................16 2-3 主模型建構.....................................................................16 2-3-1 影像輪廓偵測 .................................................16 2-3-2 病灶區修補及鏡像..................................................17 2-3-3 曲線整頓 .................................................................17 2-3-4 給予材料性質 ..............................................................18 2-4 有限元素模型分析 ..............................................................19 2-4-1荷載 (Load)....................................................................19 2-4-2 邊界條件 ......................................................................20 2-4-3 求解 ..............................................................................21 2-5 結果 ..................................................................21 2-6 討論 ........................................................................................22 第三章 主實驗一 ..................................................................25 3-1 目的 ............................................................................................25 3-2 實驗主要設備.........................................................................................25 3-3 主模型的建構.......................................................................25 3-3-1 切除區建構 ...................................................................................25 3-3-2 給予材料性質 ............................................................................26 3-4 有限元素模型分析 ................................................................................27 3-4-1 荷載 ..................................................................................27 3-4-2 邊界條件 .........................................................................................28 3-4-3 求解 .........................................................................................28 3-5 結果 ...................................................................................................29 3-6 討論 .....................................................................................................29 第四章 主實驗二 ............................................................................................31 4-1 目的 ..............................................................................................31 4-2 實驗主要設備..................................................................................31 4-3 主模型的建構...........................................................................................31 4-3-1 鈦金屬板和螺絲建構.................................................................................31 4-3-2 給予材料性質 ...........................................................................................33 4-4 有限元素模型分析 ............................................................................33 4-4-1 荷載 .......................................................................................................33 4-4-2 邊界條件 ...........................................................................................34 4-4-3 求解 ...................................................................................................34 4-5 結果 ........................................................................................................35 4-5-1 裝設連續鈦金屬板的下顎骨之最大拉應變及最大壓應變...................35 4-5-2 裝設不連續鈦金屬板的下顎骨之最大拉應變及最大壓應變.....................37 4-6 討論 ..............................................................................................38 第五章 結論與展望 .................................................................................44 5-1 綜合結論...........................................................................................44 5-2 未來研究之展望..................................................................................46 參考文獻 ........................................................................................49 表目錄 表 1. 海綿骨與皮質骨之材料特性 .......................................................................52 表 2. 肌肉方向正交分量,由單位向量表示 ......................................53 表 3. 【表 2】之肌肉方向單位向量經空間座標軸旋轉校正後之數值................54 表 4. 咀嚼肌之截面積..........................................................................55 表 5. 咀嚼肌之截面積.....................................................................56 表 6. 下顎骨彎曲量--最大開口時....................................................................57 表 7. 切除區之材料特性...............................................................................58 表 8. 鈦金屬板和螺絲之材料特性 ............................................................................59 表 9. 最大拉應變與最大壓應變值—右側大臼齒咬合時.............................60 表 10.剩餘骨脊高度與鈦金屬板厚度 ....................................................................61 表 11.最大拉應變與最大壓應變值—裝設連續或不連續鈦金屬板與螺絲的下顎骨 ....62 表 12.裝設連續或不連續鈦金屬板與螺絲的下顎骨強化效能...............................65 圖目錄 圖一. 匯入 ABAQUS/CAE 6.13-2 軟體的初始下顎骨模型 ...................................67 圖二. 材料方向 ..............................................................................68 圖三.咀嚼肌附著位置及荷載方向示意圖...........................................69 圖四. 咀嚼肌附著位置及荷載方向 .........................................................70 圖五. 模型之下顎平面與 ABAQUS/CAE 6.13-2 軟體的空間座標軸的夾角 ............71 圖六.邊界條件 — 最大開口時與下顎前突時...........................................72 圖七.邊界條件 — 右側大臼齒咬合時........................................................73 圖八.網格劃分圖 — 海綿骨.....................................................................74 圖九. 網格劃分圖 — 皮質骨 ..............................................................75 圖十. 下顎骨彎曲圖.........................................................76 圖十一.下顎骨彎曲量長條圖...........................................................77 圖十二.切除區建構圖 ...............................................................................78 圖十三.最大拉應變與最大壓應變位置 — 右側大臼齒咬合時............................79 圖十四.右側大臼齒咬合時最大壓應變及拉應變長條圖 ..........................82 圖十五.裝設連續鈦金屬板與螺絲的下顎骨模型....................83 圖十六.裝設不連續鈦金屬板與螺絲的下顎骨模型 .............................84 圖十七.海綿骨(有螺絲孔)..............................................................................85 圖十七八皮質骨(有螺絲孔).....................................................................86 圖十九.網格劃分圖 — 海綿骨(有螺絲孔)及皮質骨(有螺絲孔).................87 圖二十.網格劃分圖 — 金屬板與螺絲.................................................88 圖二十一.最大拉應變與最大壓應變位置 — 裝設連續鈦金屬板與螺絲的下顎骨.......89 圖二十二.最大拉應變與最大壓應變位置 — 裝設不連續鈦金屬板與螺絲的下顎骨.......91 圖二十三.裝設鈦金屬板的下顎骨 最大拉應變長條圖(剩餘骨脊高度 15.0 MM)....93 圖二十四.裝設鈦金屬板的下顎骨 最大壓應變長條圖(剩餘骨脊高度 15.0 MM)....94 圖二十五.裝設鈦金屬板的下顎骨 最大拉應變長條圖(剩餘骨脊高度 12.5 MM)........95 圖二十六.裝設鈦金屬板的下顎骨 最大壓應變長條圖(剩餘骨脊高度 12.5 MM)..........96 圖二十七.裝設鈦金屬板的下顎骨 最大拉應變長條圖(剩餘骨脊高度 10.0 MM)..........97 圖二十八.裝設鈦金屬板的下顎骨 最大壓應變長條圖(剩餘骨脊高度 10.0 MM)........98 圖二十九.裝設鈦金屬板的下顎骨 最大拉應變長條圖(剩餘骨脊高度 7.5 MM).............99 圖三十.裝設鈦金屬板的下顎骨 最大壓應變長條圖(剩餘骨脊高度 7.5 MM)............100 圖三十一.裝設鈦金屬板的下顎骨 最大拉應變長條圖(剩餘骨脊高度 5.0 MM)........101 圖三十二.裝設鈦金屬板的下顎骨 最大壓應變長條圖(剩餘骨脊高度 5.0 MM)....102 圖三十三.最大等效應力位置 — 連續鈦金屬板與螺絲..................................103 圖三十四.最大等效應力位置 — 不連續鈦金屬板與螺絲 ..........................104 圖三十五.裝設鈦金屬板的下顎骨 最大拉應變效能圖.......................................105 圖三十六.裝設鈦金屬板的下顎骨 最大壓應變效能圖............................................106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈦金屬版強化 | zh_TW |
| dc.subject | 殘餘下顎骨高度 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 骨折預防 | zh_TW |
| dc.subject | 下顎骨邊緣切除術 | zh_TW |
| dc.subject | marginal mandibulectomy | en |
| dc.subject | fracture prevention | en |
| dc.subject | finite element analysis | en |
| dc.subject | plate reinforcement. | en |
| dc.title | 下顎骨大範圍邊緣切除術後之骨折預防效能--有限元素分析 | zh_TW |
| dc.title | Effect of Reinforcements on Fracture Prevention After Extensive Marginal Mandibulectomy: A Finite Element Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林立德(Li-Deh Lin) | |
| dc.contributor.oralexamcommittee | 呂良正(Liang-Jenq Leu) | |
| dc.subject.keyword | 下顎骨邊緣切除術,骨折預防,有限元素分析,殘餘下顎骨高度,鈦金屬版強化, | zh_TW |
| dc.subject.keyword | marginal mandibulectomy,fracture prevention,finite element analysis,plate reinforcement., | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201803478 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
