Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72415
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張芳嘉(Fang-Chia Chang)
dc.contributor.authorYi-Ling Yangen
dc.contributor.author楊翊鈴zh_TW
dc.date.accessioned2021-06-17T06:41:09Z-
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation1. Fisher, R.S., et al., Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017. 58(4): p. 522-530.
2. Moshe, S.L., et al., Epilepsy: new advances. Lancet, 2015. 385(9971): p. 884-98.
3. Scheffer, I.E., et al., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017. 58(4): p. 512-521.
4. Stafstrom, C.E. and L. Carmant, Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med, 2015. 5(6).
5. Maguire, J., Epileptogenesis: More Than Just the Latent Period. Epilepsy Curr, 2016. 16(1): p. 31-3.
6. Di Maio, R., Neuronal mechanisms of epileptogenesis. Front Cell Neurosci, 2014. 8: p. 29.
7. Pitkanen, A. and K. Lukasiuk, Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol, 2011. 10(2): p. 173-86.
8. Iori, V., F. Frigerio, and A. Vezzani, Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol, 2016. 26: p. 118-23.
9. Ravizza, T., et al., Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis, 2008. 29(1): p. 142-60.
10. Kleen, J.K. and G.L. Holmes, Taming TLR4 may ease seizures. Nat Med, 2010. 16(4): p. 369-70.
11. Silveira, G., A.C. de Oliveira, and A.L. Teixeira, Insights into inflammation and epilepsy from the basic and clinical sciences. J Clin Neurosci, 2012. 19(8): p. 1071-5.
12. Vezzani, A., A. Friedman, and R.J. Dingledine, The role of inflammation in epileptogenesis. Neuropharmacology, 2013. 69: p. 16-24.
13. Shimada, T., et al., Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm, 2014. 2014: p. 901902.
14. Barkmeier, D.T. and J.A. Loeb, An animal model to study the clinical significance of interictal spiking. Clin EEG Neurosci, 2009. 40(4): p. 234-8.
15. Lehmann, T.N., et al., Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia, 2000. 41 Suppl 6: p. S190-4.
16. Shao, L.R. and F.E. Dudek, Increased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy. J Neurophysiol, 2004. 92(3): p. 1366-73.
17. Bains, J.S., J.M. Longacher, and K.J. Staley, Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci, 1999. 2(8): p. 720-6.
18. Staley, K., J.L. Hellier, and F.E. Dudek, Do interictal spikes drive epileptogenesis? Neuroscientist, 2005. 11(4): p. 272-6.
19. Pressler, R.M., et al., Treatment of interictal epileptiform discharges can improve behavior in children with behavioral problems and epilepsy. J Pediatr, 2005. 146(1): p. 112-7.
20. Chauviere, L., et al., Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann Neurol, 2012. 71(6): p. 805-14.
21. Song, H., et al., Effects of Antiepileptic Drugs on Spontaneous Recurrent Seizures in a Novel Model of Extended Hippocampal Kindling in Mice. Front Pharmacol, 2018. 9: p. 451.
22. Loscher, W. and C. Brandt, Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev, 2010. 62(4): p. 668-700.
23. Kandratavicius, L., et al., Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat, 2014. 10: p. 1693-705.
24. Nilsen, K.E., M.C. Walker, and H.R. Cock, Characterization of the tetanus toxin model of refractory focal neocortical epilepsy in the rat. Epilepsia, 2005. 46(2): p. 179-87.
25. Sharma, A.K., et al., Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol, 2007. 35(7): p. 984-99.
26. Turski, W.A., et al., Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res, 1983. 9(3): p. 315-35.
27. Buckmaster, P.S. and M.M. Haney, Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy. Epilepsy Res, 2012. 102(3): p. 153-9.
28. Schmidt, J., Changes in seizure susceptibility in rats following chronic administration of pentylenetetrazol. Biomed Biochim Acta, 1987. 46(4): p. 267-70.
29. Loscher, W., Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 2002. 50(1-2): p. 105-23.
30. Bazil, C.W., Epilepsy and sleep disturbance. Epilepsy Behav, 2003. 4 Suppl 2: p. S39-45.
31. Malow, B.A., R.J. Bowes, and X. Lin, Predictors of sleepiness in epilepsy patients. Sleep, 1997. 20(12): p. 1105-10.
32. Bazil, C.W., L.H. Castro, and T.S. Walczak, Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy. Arch Neurol, 2000. 57(3): p. 363-8.
33. Beran, R.G., M.J. Plunkett, and G.J. Holland, Interface of epilepsy and sleep disorders. Seizure, 1999. 8(2): p. 97-102.
34. Manni, R. and M. Terzaghi, Comorbidity between epilepsy and sleep disorders. Epilepsy Res, 2010. 90(3): p. 171-7.
35. Minecan, D., et al., Relationship of epileptic seizures to sleep stage and sleep depth. Sleep, 2002. 25(8): p. 899-904.
36. Gigli, G.L., et al., Nocturnal sleep and daytime somnolence in untreated patients with temporal lobe epilepsy: changes after treatment with controlled-release carbamazepine. Epilepsia, 1997. 38(6): p. 696-701.
37. Duncan, J.S., et al., Adult epilepsy. Lancet, 2006. 367(9516): p. 1087-1100.
38. Pilcher, W.H. and W.G. Rusyniak, Complications of epilepsy surgery. Neurosurg Clin N Am, 1993. 4(2): p. 311-25.
39. Salanova, V., O. Markand, and R. Worth, Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients. Epilepsia, 2002. 43(2): p. 170-4.
40. Fisher, R., et al., Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia, 2010. 51(5): p. 899-908.
41. McIntyre, C.C. and R.W. Anderson, Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J Neurochem, 2016. 139 Suppl 1(Suppl 1): p. 338-345.
42. Wu, C. and A.D. Sharan, Neurostimulation for the treatment of epilepsy: a review of current surgical interventions. Neuromodulation, 2013. 16(1): p. 10-24; discussion 24.
43. Herrington, T.M., J.J. Cheng, and E.N. Eskandar, Mechanisms of deep brain stimulation. J Neurophysiol, 2016. 115(1): p. 19-38.
44. Jobst, B.C., et al., Brain stimulation for the treatment of epilepsy. Epilepsia, 2010. 51 Suppl 3: p. 88-92.
45. Lim, S.N., et al., Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia, 2007. 48(2): p. 342-7.
46. Lee, C.Y., et al., Successful Treatment of Refractory Status Epilepticus Using Anterior Thalamic Nuclei Deep Brain Stimulation. World Neurosurg, 2017. 99: p. 14-18.
47. Osorio, I., et al., High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia, 2007. 48(8): p. 1561-71.
48. Lee, K.J., Y.M. Shon, and C.B. Cho, Long-term outcome of anterior thalamic nucleus stimulation for intractable epilepsy. Stereotact Funct Neurosurg, 2012. 90(6): p. 379-85.
49. Zangiabadi, N., et al., Deep Brain Stimulation and Drug-Resistant Epilepsy: A Review of the Literature. Front Neurol, 2019. 10: p. 601.
50. Perea, G., M. Navarrete, and A. Araque, Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci, 2009. 32(8): p. 421-31.
51. Vedam-Mai, V., et al., Deep brain stimulation and the role of astrocytes. Mol Psychiatry, 2012. 17(2): p. 124-31, 115.
52. Perea, G. and A. Araque, Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci, 2005. 25(9): p. 2192-203.
53. Kettenmann, H. and A. Verkhratsky, Neuroglia: the 150 years after. Trends Neurosci, 2008. 31(12): p. 653-9.
54. Amorim, B.O., et al., Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats. J Neuroinflammation, 2015. 12: p. 162.
55. Calleja-Castillo, J.M., et al., Chronic deep brain stimulation of the hypothalamic nucleus in wistar rats alters circulatory levels of corticosterone and proinflammatory cytokines. Clin Dev Immunol, 2013. 2013: p. 698634.
56. Ichiyama, T., et al., Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy. Neurology, 1998. 50(2): p. 407-11.
57. Alyu, F. and M. Dikmen, Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr, 2017. 29(1): p. 1-16.
58. Ghasemi, M. and S.C. Schachter, The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav, 2011. 22(4): p. 617-40.
59. Jewett, K.A. and J.M. Krueger, Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm, 2012. 89: p. 241-57.
60. Takahashi, S., et al., Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am J Physiol, 1997. 273(2 Pt 2): p. R677-82.
61. Takeuchi, H., et al., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem, 2006. 281(30): p. 21362-8.
62. Mlodzikowska-Albrecht, J., B. Steinborn, and M. Zarowski, Cytokines, epilepsy and epileptic drugs--is there a mutual influence? Pharmacol Rep, 2007. 59(2): p. 129-38.
63. Probert, L., et al., Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A, 1995. 92(24): p. 11294-8.
64. Riazi, K., et al., Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A, 2008. 105(44): p. 17151-6.
65. Mang, G.M. and P. Franken, Sleep and EEG Phenotyping in Mice. Curr Protoc Mouse Biol, 2012. 2(1): p. 55-74.
66. Shimada, T. and K. Yamagata, Pentylenetetrazole-Induced Kindling Mouse Model. J Vis Exp, 2018(136).
67. Avoli, M., G. Biagini, and M. de Curtis, Do interictal spikes sustain seizures and epileptogenesis? Epilepsy Curr, 2006. 6(6): p. 203-7.
68. de Curtis, M. and G. Avanzini, Interictal spikes in focal epileptogenesis. Prog Neurobiol, 2001. 63(5): p. 541-67.
69. Avoli, M., et al., Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol, 2002. 68(3): p. 167-207.
70. Karoly, P.J., et al., Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain, 2016. 139(Pt 4): p. 1066-78.
71. Bazil, C.W., Sleep-related epilepsy. Curr Neurol Neurosci Rep, 2003. 3(2): p. 167-72.
72. Mendez, M. and R.A. Radtke, Interactions between sleep and epilepsy. J Clin Neurophysiol, 2001. 18(2): p. 106-27.
73. Lanigar, S. and S. Bandyopadhyay, Sleep and Epilepsy: A Complex Interplay. Mo Med, 2017. 114(6): p. 453-457.
74. Ng, M. and M. Pavlova, Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat, 2013. 2013: p. 932790.
75. Schonherr, M., et al., The delta between postoperative seizure freedom and persistence: Automatically detected focal slow waves after epilepsy surgery. Neuroimage Clin, 2017. 13: p. 256-263.
76. Malow, B.A., et al., Relationship of interictal epileptiform discharges to sleep depth in partial epilepsy. Electroencephalogr Clin Neurophysiol, 1997. 102(1): p. 20-6.
77. Tao, J.X., et al., Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia, 2011. 52(3): p. 467-76.
78. Chen, L., et al., Gastrodin Attenuates Pentylenetetrazole-Induced Seizures by Modulating the Mitogen-Activated Protein Kinase-Associated Inflammatory Responses in Mice. Neurosci Bull, 2017. 33(3): p. 264-272.
79. Kolosowska, K., et al., The role of interleukin-1beta in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus. Eur J Pharmacol, 2014. 731: p. 31-7.
80. Viviani, B., et al., Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci, 2003. 23(25): p. 8692-700.
81. Postnikova, T.Y., et al., Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors. Biochemistry (Mosc), 2017. 82(3): p. 282-290.
82. Sayyah, M., et al., Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Exp Neurol, 2005. 191(1): p. 145-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72415-
dc.description.abstract癲癇是一種常見的神經系統疾病,病患約佔世界人口的1%。其中約70%的癲癇患者可以使用抗癲癇藥物進行治療。而剩下的30%無法使用抗癲癇藥物做治療的類型被稱為頑固型癲癇。深部腦部電刺激(DBS)通過電極傳遞電流以刺激目標區域,在近期已被許可作為癲癇的替代治療選擇,而在目標區域選擇中,視丘前核(the anterior nucleus of thalamus, ANT)因其可向扣帶迴(cingulate gyrus)傳遞訊號再投射至海馬旁迴(parahippocampal gyrus)進而輸送訊號至大範圍的大腦皮質(entorhinal cortex),成為具良好發展性之抗癲癇效果目標核區。迄今為止,DBS的作用機制仍不是非常清楚。癲癇形成過程(epileptogenesis)為致使癲癇的重要過程,影響epileptogenesis的主要因素為發炎反應,它在受傷的大腦中迅速且持續地誘發後續下游作用。當中第一介白素(interleukin-1 beta, IL-1β)與腫瘤壞死因子 (tumor necrosis factor-α, TNFα)為重要指標。根據本實驗室先前的研究,IL-1β濃度的變化可幫助N-甲基-D-天冬氨酸受體(NMDAR)的活化使癲癇的發生率增加。在本研究中,我們使用戊四氮(pentylenetetrazol, PTZ)誘導的小鼠評估ANT-DBS的抗癲癇作用與對癲癇引起之睡眠障礙的影響,並分析是否藉由調節促炎因子濃度達到抗癲癇之目的。本篇研究將實驗動物分為五組:單純給予saline之控制組、單純給予PTZ之致癲癇組、於PTZ藥物注射前10分鐘給予ANT-DBS持續30分鐘之治療組、單純植入ANT-DBS電極給予PTZ藥物注射之致癲癇組與單純植入ANT-DBS電極給予saline注射之控制組。首先分析在低劑量PTZ誘導癲癇發作的持續時間,ANT-DBS治療組明顯低於PTZ誘導組。在interictal spike (IIS) 部分,研究認為IIS的頻率與Epileptogenesis相關,我們發現在ANT-DBS治療組中,儘管仍有IIS的出現,但數量明顯低於PTZ誘導組,且出現的時間晚於PTZ致癲癇組。接著分析ANT-DBS對睡眠障礙的影響,首次注射PTZ後, PTZ致癲癇組的NREM與控制組相比明顯下降。第六次注射PTZ後,發現PTZ致癲癇組於NREM(non-rapid eye movement, NREM)的時間與PFS控制組相比明顯減少,ANT-DBS治療組則與PFS控制組沒有顯著差異。在REM (rapid eye movement, REM)的睡眠時間則是在光暗期(ZT19-24)發現ANT-DBS治療組明顯高於PTZ致癲癇組。為了解ANT-DBS是否也對癲癇引起的睡眠片段化產生影響,我們分析在光亮周期(ZT0-12)中的階段轉換率,第一次注射PTZ後,兩組的轉換率並沒有明顯差別,而在第六次注射PTZ後發現,PTZ致癲癇組的轉換率比起PFS控制組與ANT -DBS治療組有明顯上升,且ANT-DBS治療組與PFS控制組相比則沒有明顯變化,表明ANT-DBS可能有助於改善睡眠片段化,進而提升睡眠品質。再進一步了解ANT -DBS對睡眠的改善是由於睡眠階段次數(bouts number)的增加或是睡眠持續時間(bouts duration)的延長,於NREM中,三組在次數與時間皆無明顯差異,而在REM中ANT -DBS不論是持續次數或是持續時間都明顯高於PTZ組別,說明其是藉由提升REM的次數與時間來達到改善睡眠效果。實驗室先前研究已發現IL-1β能幫助活化NMDAR致使神經興奮性提高進而使癲癇發作率提高,以及文獻指出TNFα為癲癇進程的重要指標之一,因此我們使用酵素結合免疫吸附分析法測定海馬迴與下視丘中的IL-1β與TNFα表現量,結果顯示在海馬迴與下視丘中的IL-1β表現量沒有明顯變化,海馬迴中的TNFα也沒有明顯改變,而在下視丘中發現PTZ誘導組之TNFα表現量與控制組比有明顯提升。綜上所述,ANT-DBS在PTZ誘導癲癇小鼠中具有抗癲癇的作用,並有助於改善睡眠片段化,且可能能夠延緩epileptogenesis。zh_TW
dc.description.abstractEpilepsy, which affects about 1% of the world’s population, is a common neurological disease. About 70% of patients with epilepsy can use anti-epileptic drugs, AEDs, for treatment. Furthermore, 30% of patients that cannot be treated with AED called refractory epilepsy. Deep brain stimulation (DBS), which delivers an electrical current through an electrode to stimulate the target region(s), has been recently licensed as an alternative treatment option for epilepsy. In the selection of the target area, the anterior nucleus of thalamus (ANT) can transmit the signal to the cingulate gyrus then project to the parahippocampal gyrus and then send the signal to a large cortex of the brain through entorhinal cortex which becomes the target area for the antiepileptic effect of DBS. To date, the mechanism of DBS is still unclear. Epileptogenesis, which develops the progression in epilepsy, is mediated by inflammation in the injured brain. Among them, the proinflammatory factor interleukin-1 (IL-1β) and tumor necrosis factor-α (TNFα) are important mediators. Based on our previous research, the raise of IL-1β concentrations can activate N-methyl-D-aspartate receptor (NMDAR), which has a markedly increase in epilepsy. In our study, we used pentylenetetrazol (PTZ)-induced epileptic mice to evaluate the anti-epileptic effects of ANT-DBS, and understood the influence on epilepsy-induced sleep disruption. In this study, the experimental animals were divided into five groups: the control group given pyrogen-free saline (PFS) alone (the PFS group), the epilepsy group given PTZ alone (the PTZ group), the treatment group given ANT-DBS 10 minutes before PTZ drug injection and continue for 30 minutes (the ANT-DBS+PTZ group), the epilepsy group implanted with the ANT-DBS electrode and given PTZ alone (the sham surgery+PTZ group), and the control group implanted with the ANT-DBS electrode and given PFS alone (the sham surgery+PFS group). We analyzed the duration of seizure, the ANT-DBS+PTZ group had significantly lower seizure duration than that of PTZ group.
The number of interictal spikes (IIS) is related to epileptogenesis, and we found that the IIS obtained from the ANT-DBS+PTZ group is significantly lower than that of PTZ group, and the time to appear the IIS was later than the PTZ group. Next, we analyzed the effect of ANT-DBS on sleep disruption. After the first time injection of PTZ, NREM sleep was significantly decreased in the PTZ group. After the sixth injection of PTZ, the NREM sleep of the PTZ group decreased significantly. The ANT-DBS+PTZ group is not significantly different from the PFS group. The PTZ group significantly decreased REM sleep during the light period. In order to understand whether the ANT-DBS also affects the fragmentation of sleep caused by epilepsy, we analyzed the transition between different vigilance states during the light cycle (ZT0-12). After the sixth injection of PTZ, the transition rate was significantly increased, indicating that PTZ-induced epilepsy caused sleep fragmentation. The ANT-DBS improved the fragmentation of sleep induced by PTZ.
We further analyzed sleep architecture to understand whether the improvement of sleep by ANT-DBS is due to the increase of bouts number or the extension of bouts duration. In NREM, the three groups have no significant difference in number and duration, while in REM, both the number and duration in the ANT-DBS+PTZ group are significantly higher than those of the PTZ group, indicating that it improves sleep by increasing the number and duration of REM. Previous studies found that IL-1β can activate NMDAR to increase nerve excitability and thus increases the susceptibility of seizures. The literature points out that TNFα is also one of the important indicators of epileptogenesis. Therefore, we used an enzyme‐linked immunosorbent assay to measure IL-1β and TNFα concentrations in the hippocampus and hypothalamus. The results showed that the expression of TNFα in the PTZ group was significantly increased when compared with the PFS group in the hypothalamus, and ANT-DBS could decrease the PTZ-induced enhancement of TNF-. In summary, ANT-DBS has antiepileptic effects in PTZ-induced epilepsy mice and helps to improve the effect of sleep disruption, and it might be helpful to suppress the epileptogenesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:41:09Z (GMT). No. of bitstreams: 1
U0001-1808202016323300.pdf: 2923748 bytes, checksum: f8419394c72ac35a1f0cd0790824cb63 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 6
中文摘要 7
ABSTRACT 9
1. INTRODUCTION 12
1.1 EPILEPSY 12
1.2 EPILEPTOGENESIS 13
1.3 INTERICTAL SPIKE 14
1.4 EPILEPSY ANIMAL MODELS 14
1.5 EPILEPSY AND SLEEP DISRUPTION 15
1.6 EPILEPSY TREATMENTS 16
1.7 DEEP BRAIN STIMULATION 16
1.8 INTERACTION BETWEEN CYTOKINES AND EPILEPSY 17
2. SPECIFIC AIMS 19
3. MATERIALS AND METHODS 20
3.1 ANIMAL 20
3.2 STEREOTAXIC SURGERY 20
3.3 PENTYLENETETRAZOL (PTZ) KINDLING 21
3.4 ELECTROENCEPHALOGRAM RECORDING 21
3.5 SLEEP ANALYSIS 22
3.6 SEIZURE ANALYSIS 22
3.7 INTERICTAL SPIKE ANALYSIS 22
3.8 ANT-DBS 22
3.9 TISSUE COLLECTION 23
3.10 PROTEIN EXTRACTION 23
3.11 ENZYME‐LINKED IMMUNOSORBENT ASSAY (ELISA) 23
3.12 STATISTICAL ANALYSIS 24
4. RESULTS 25
4.1 PTZ-INDUCED MODEL 25
4.2 THE ANTIEPILEPTIC EFFECT OF ANT-DBS 25
4.3 EFFECT OF ANT-DBS ON SLEEP DISRUPTION 26
4.4 CYTOKINES EXPRESSION 28
5. DISCUSSION 29
5.1 THE EFFECT OF ANT-DBS ON EPILEPTOGENESIS 29
5.2 EFFECT OF ANT-DBS ON SLEEP DISRUPTION 29
5.3 THE EXPRESSION OF CYTOKINES 30
6. CONCLUSION 32
7. FIGURE 33
8. TABLE 55
REFERENCE 56
dc.language.isoen
dc.subject癲癇zh_TW
dc.subject深層腦部電刺激zh_TW
dc.subject視丘前核zh_TW
dc.subject癲癇形成過程zh_TW
dc.subject睡眠障礙zh_TW
dc.subjectEpilepsyen
dc.subjectdeep brain stimulation (DBS)en
dc.subjectanterior nucleus of the thalamus (ANT)en
dc.subjectepileptogenesisen
dc.subjectsleep disruptionen
dc.title深層腦刺激對PTZ誘導癲癇與睡眠障礙的影響zh_TW
dc.titleEffects of deep brain stimulation on PTZ-induced seizure and sleep disruptionen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee尹佩璐(Pei-Lu Yin),蕭逸澤(Yi-Tse Hsiao),周碩彬(Shuo-Bin Jou)
dc.subject.keyword癲癇,深層腦部電刺激,視丘前核,癲癇形成過程,睡眠障礙,zh_TW
dc.subject.keywordEpilepsy,deep brain stimulation (DBS),anterior nucleus of the thalamus (ANT),epileptogenesis,sleep disruption,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202003995
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1808202016323300.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved