Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72413
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島
dc.contributor.authorShiou-Rong Chuen
dc.contributor.author朱琇榕zh_TW
dc.date.accessioned2021-06-17T06:41:01Z-
dc.date.available2018-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAndrić, J., M.R. Kumjian, D.S. Zrnić, J.M. Straka, and V.M. Melnikov ,2012: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study, J. Appl. Meteorol. Climatol., 52(3), 682–700.
Bailey, M.P., and J. Hallett, 2009: A comprehensive habit diagramfor atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–2899.
Black, R.A. and J. Hallett, 1986: Observations of the Distribution of Ice in Hurricanes. J. Atmos. Sci., 43, 802–822.
—, 1999: Electrification of the Hurricane. J. Atmos. Sci., 56, 2004–2028.
Blumen, W. and B.D. Gross, 1987: Advection of a Passive Scalar over a Finite-Amplitude Ridge in a Stratified Rotating Atmosphere. J. Atmos. Sci., 44, 1696–1705.
Braun, S.A., R. Rotunno, and J.B. Klemp, 1999: Effects of Coastal Orography on Landfalling Cold Fronts. Part II: Effects of Surface Friction. J. Atmos. Sci., 56, 3366–3384.
Bringi, V.N., J. Vivekanandan, and J.D. Tuttle, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 2564–2577.
Brown, B.R., M.M. Bell, and A.J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910–917.
Didlake, A.C. and R.A. Houze, 2013a: Convective-Scale Variations in the Inner-Core Rainbands of a Tropical Cyclone. J. Atmos. Sci., 70, 504–523.
—, and M.R. Kumjian, 2017: Examining Polarimetric Radar Observations of Bulk Microphysical Structures and Their Relation to Vortex Kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 4521–4541.
Griffin, E.M., T.J. Schuur, D.R. MacGorman, M.R. Kumjian, and A.O. Fierro, 2014: An Electrical and Polarimetric Analysis of the Overland Reintensification of Tropical Storm Erin (2007). Mon. Wea. Rev., 142, 2321–2344.
Houze, R.A., F.D. Marks, and R.A. Black, 1992: Dual-Aircraft Investigation of the Inner Core of Hurricane Norbert. Part II: Mesoscale Distribution of Ice Particles. J. Atmos. Sci., 49, 943–963.
—, 2010: Clouds in Tropical Cyclones. Mon. Wea. Rev., 138, 293–344.
—, 2012: Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001.
Jiusto, J.E. and H.K. Weickmann, 1973: Types of Snowfall. Bull. Amer. Meteor. Soc., 54, 1148–1162.
Jou, B.J.-D., C.-J. Jung, and R.-G. Hsiu, 2015: Quantitative Precipitation Estimation Using S-Band Polarimetric Radars in Taiwan Meiyu Season. Atmos. Sci., 43(2),91-113. (In Chinese with English abstract)
Kennedy, P.C., and S.A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844–858,
Jiusto,J.E.,andH.K.Weickmann, 1973: Types of snowfall. Bull. Amer.
Meteor. Soc., 54, 1148–1162Jiusto,J.E.,andH.K.Weickmann, 1973: Types of snowfall. Bull. Amer.Meteor. Soc., 54, 1148–1162.
Jiusto,J.E.,andH.K.Weickmann, 1973: Types of snowfall. Bull. Amer.
Meteor. Soc., 54, 1148–1162,
Jiusto,J.E.,andH.K.Weickmann, 1973: Types of snowfall. Bull. Amer.
Meteor. Soc., 54, 1148–1162,
Jiusto,J.E.,andH.K.Weickmann, 1973: Types of snowfall. Bull. Amer.
Meteor. Soc., 54, 1148–1162Jiusto, J. E.,and H. K. Weickmann, 1973: Types of snowfall. Bull. Amer.Meteor. Soc., 54, 1148–116Jou, B. J.-D., C.-J. Jung, and R.-G. Hsiu, 2015: Quantitative Precipitation Estimation Using S-Band Polarimetric Radars in Taiwan Meiyu Season. Atmos. Sci., 43(2),91-113. (In Chinese with English abstract)
Kirshbaum, D., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere, 9, 80.
Kumjian, M.R., 2013: Principles and applications of dual-polarization weather radar. Part 1: Description of the polarimetric radar variables. Journal of Operational Meteorology, 1(19), 226-242.
—, 2013: Principles and applications of dual-polarization weather radar. Part 2: Warm and cold season applications. Journal of Operational Meteorology, 1(20), 243-264.
—, 2013: Principles and applications of dual-polarization weather radar. Part 3: Artifacts. Journal of Operational Meteorology, 1(21), 265-274.
—, and O. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067.
Marks, F.D. and R.A. Houze, 1987: Inner Core Structure of Hurricane Alicia from Airborne Doppler Radar Observations. J. Atmos. Sci., 44, 1296–1317.
May, P.T., J.D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of Tropical Cyclone Ingrid. Mon. Wea. Rev., 136, 616–630.
Pruppacher, H.R., and J.D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd Ed. Dordrecht, Kluwer Academic Publisher, 954 p.
Rauber, R.M. and S.W. Nesbitt, 2018: Radar Meteorology: A First Course. 1st Ed. New York, Wiley-Blackwell Publisher, 152-155 p.
Ryzhkov, A.V., D.S. Zrnić, and B.A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125–134.
Rosenfeld, D., and C. W. Ulbrich ,2003: Cloud microphysical properties, processes, and rainfall estimation opportunities, Meteorol. Monogr.,30(52), 237–258.
Rowe, A. K., and R. A. Houze, 2014: Microphysical characteristics of MJO convection over the Indian ocean during DYNAMO. Journal of Geophysical Research-Atmospheres, 119, 2543-2554.
Tang, X., M.-J. Yang, and Z.‐M. Tan, 2012: A modeling study of orographic convection and mountain waves in the landfalling typhoon Nari (2001). Q.J.R. Meteorol. Soc., 138, 419-438.
—, and W.-C. Lee, and M.M. Bell, 2014: A Squall-Line-Like Principal Rainband in Typhoon Hagupit (2008) Observed by Airborne Doppler Radar. J. Atmos. Sci., 71, 2733–2746.
Willoughby, H.E., F.D. Marks, and R.J. Feinberg, 1984: Stationary and Moving Convective Bands in Hurricanes. J. Atmos. Sci., 41, 3189–3211
—, 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36. 183-191.
Wang, Y., 2009: How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?. J. Atmos. Sci., 66, 1250–1273.
Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565–2578.
Wang, M., K. Zhao, M. Xue, G. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12,415–12,433.
Wen, J., K. Zhao, H. Huang, B. Zhou, Z. Yang, G. Chen, M. Wang, L. Wen, H. Dai, L. Xu, S. Liu, G. Zhang, and W.-C. Lee, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J. Geophys. Res., 122, 8033-8050.
Witcraft, N.C., Y.‐L. Lin, and Y.‐H. Kuo ,2005: Dynamics of orographic rain associated with the passage of a tropical cyclone over a mesoscale mountain. Terr. Atmos. Oceanic Sci., 16, 1133–1161.
Wu, D., K. Zhao, M.R. Kumjian, X. Chen, H. Huang, M. Wang, A.C. Didlake, Y. Duan, and F. Zhang, 2018: Kinematics and Microphysics of Convection in the Outer Rainband of Typhoon Nida (2016) Revealed by Polarimetric Radar. Mon. Wea. Rev., 146, 2147–2159.
Yuter, S.E., and R.A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497–521.
—, C.-L. Tsai, 2013: Structural and Surface Features of Arc-Shaped Radar Echoes along an Outer Tropical Cyclone Rainband. J. Atmos. Sci., 70, 56–72.
—, and C.-L. Tsai, 2017: Structural changes of an outer tropical cyclone rainband encountering the topography of northern Taiwan. Quart. J. Roy. Meteor. Soc., 143, 1107–1122.
—, and C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Scientific Reports, 8, 2045-2322.
Zehnder, J. A., and P. R. Bannon, 1988: Frontogenesis over a mountain ridge. J. Atmos. Sci., 45, 628–644.
Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678–693.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72413-
dc.description.abstract本論文利用地面雷達觀測資料對蘇迪勒颱風雨帶的運動場和雙偏極化參數特性進行分析,主要目的為對登陸颱風螺旋雨帶的雲物理過程有更近一步的了解。我們利用了對流與層狀降雨分解演算法來定義位於颱風移動方向第一象限的兩個次雨帶,分別稱之為「北雨帶」和「南雨帶」。
由雙都卜勒合成風場分析結果得知,北雨帶高層為輻合,底層為輻散,伴隨弱的下沉氣流;而南雨帶底層為輻合,高層為輻散,伴隨增強的上升運動。此結果顯示,兩個雨帶可能處於不同的生命期:北雨帶處於消散期,而南雨帶處於發展期。雨帶的雙偏極化參數垂直剖面的變化顯示,在登陸之前,南雨帶的在溶解層之上有較多的冰相雲物理過程,可能和南雨帶增強的上升氣流有關,較強的上升氣流可將較多的水氣傳送到高層,而有較高的過飽和度讓冰相粒子生長;在溶解層以下,雨滴可能經由碰撞凝結的過程成長或是藉由雲水凝聚成雨滴所成長;北雨帶雖然有類似特性,但雙偏極化參數數值都較南雨帶為小,且變化不明顯,推測和北雨帶處於消散期有關係。因此,推測雨帶在登陸前,冰相雲物理過程和暖雨過程都對降雨有貢獻。
當雨帶登陸山區之後,雨帶的底層回波明顯增強,且回波垂直上向上發展,雙偏極化參數也顯示,在溶解層以下,雨滴的平均粒徑變大且液態水含量增加,這樣的特徵可能和雨帶受到地形抬升,導致降雨增強有密切的關係。然而,雨帶登陸後大約30分鐘之後,從回波場幾乎沒辦法辨別北雨帶,表示北雨帶已經消散,其原因可能和原本所伴隨的下沉運動受到背風坡的下沉氣流加強所導致。同時,南雨帶的底層回波減弱,且所伴隨的上升運動減弱,顯示南雨帶也減弱。另外,在溶解層高度以上,雙偏極化參數的垂直剖面變化並不大,推測在雨帶登陸之後,雨帶所伴隨的強降雨的雲物理過程主要是透過暖雨過程。
zh_TW
dc.description.abstractTyphoon Soudelor (201513) made landfall and moved across the topography in northern Taiwan. The Convective-Stratiform Separation Algorithm were used to identify two secondary rainbands (“rainband N” and “rainband S”) located in the right front quadrant during Soudelor’s landfall. The evolution, kinematic and microphysical characteristics of these rainbands are examined in this study.
The rainband kinematic structures were examined using dual-Doppler retrieved winds. The reflectivity and band-relative horizontal winds of two rainbands seem to suggest they were in different developing stages: rainband S was intensifying with convergence below and divergence above while rainband N was dissipating with divergence below and convergence above. The line-averaged vertical airflow and precipitation structure associated with the offshore segments of two rainbands exhibit some similar features to inner rainbands while some resemble outer rainbands. Consistent with the kinematic structures, the polarimetric vertical profiles reveal corresponding microphysics in two rainbands. The vertical profiles of polarimetric variables in rainband S indicate more moisture content was transported to the higher level through the intensifying updraft, which caused greater supersaturation for ice particles to grow above the melting layer. The features below the melting layer suggest collision-coalescence process and/or accretion of cloud water by raindrops. Although the polarimetric vertical profiles of rainband N have similar distributions, the values are all smaller than that in rainband S. This might be related to the dissipating of rainband N. The microphysics suggest both ice-phased and warm rain process play important roles in the major pathway to heavy rainfall in rainbands when they were offshore.
After two rainbands made landfall, the reflectivity structures at near-ground level became stronger. The polarimetric features also suggest the mean raindrop size and liquid water content are the largest, which relates closely to heavier rainfall within the rainbands due to the terrain lifting. However, at later time spans, rainband N was observed mostly dissipated. This might be related to the intensification that original downward motion combines with the downslope flow in the lee. In contrast, the reflectivity structure and airflow pattern in rainband S associated with the landfalling segment are similar to that with the offshore segment, but with weakening updrafts. The features of polarimetric variable above the melting layer presented less curved profiles, indicating the less moisture content transported for ice-phased processes. Therefore, the dominated process to the precipitation after two rainbands made landfall is mainly via warm-rain processes like collision and coalescence.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:41:01Z (GMT). No. of bitstreams: 1
ntu-107-R05229015-1.pdf: 7461165 bytes, checksum: c4c79686a54f98c353f44ecf606c823c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAcknowledgment I
Chinese Abstract III
Abstract IV
Table of Contents VI
Table Captions VIII
Figure Captions IX
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 7
2.1 Data and their processing 7
2.2 Polarimetric variables 9
2.3 Dual-Doppler Wind Synthesis 11
Chapter 3 Rainbands of Typhoon Soudelor 14
3.1 Case Overview 14
3.2 Rainband identification 16
Chapter 4 Rainband Structure and Evolution 20
4.1 Kinematic structure 20
4.1.1 Offshore segments of rainbands 20
4.1.2 Landfalling segments of rainbands 24
4.1.3 Discussion 28
4.2 Polarimetric characteristics 31
4.2.1 Offshore segments of rainbands 32
(a) Profiles of ZH, ZDR, and KDP 32
(b) Profiles of ρHV 34
4.2.2 Landfalling segments of rainbands 35
(a) Profiles of ZH, ZDR, and KDP 36
(b) Profiles of ρHV 37
4.2.3. Discussion 37
Chapter 5 Summary and Conclusion 44
Reference 48
Tables 55
Figures 58
Appendix 87
dc.language.isoen
dc.subject運動場與雲物理結構zh_TW
dc.subject登陸颱風zh_TW
dc.subject次雨帶zh_TW
dc.subject雙偏極化雷達觀測zh_TW
dc.subjectSecondary rainbandsen
dc.subjectLandfalling typhoonen
dc.subjectKinematic and microphysical structuresen
dc.subjectPolarimetric radar observationsen
dc.title利用雙偏極化雷達分析颱風雨帶之運動場與雲物理特性zh_TW
dc.titleKinematic and Microphysical Properties of Typhoon Rainbands Observed by Polarimetric Radar in Taiwanen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊明仁,李文兆,游政谷
dc.subject.keyword登陸颱風,次雨帶,運動場與雲物理結構,雙偏極化雷達觀測,zh_TW
dc.subject.keywordLandfalling typhoon,Secondary rainbands,Kinematic and microphysical structures,Polarimetric radar observations,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201803114
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved