請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72401完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃尹男 | |
| dc.contributor.author | Yu-Chen Lin | en |
| dc.contributor.author | 林禹辰 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:40:14Z | - |
| dc.date.available | 2020-10-03 | |
| dc.date.copyright | 2018-10-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Baker, J. W. (2007). 'Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.' Bulletin of the Seismological Society of America 97(5): 1486-1501.
Chopra, A. K. (2001). Dynamic of Structure : Theory and Application to Earthquake Engineering. Prentice Hall, Upper Saddle River, NJ. Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M., and Warn, G. P. (2007). 'Performance of seismic isolation hardware under service and seismic loading.' Report MCEER-07-0012, University at Buffalo, State University of New York, Buffalo, NY. Hwang, J. S., Huang, Y. N., Yi, S. L., and Ho, S. Y. (2008). 'Design formulation for supplemental viscous dampers to building structures.' Journal of Structural Engineering, 134(1), 22-31. Kumar, M., Whittaker, A. S. and Constantinou, M. C. (2014). 'Characterizing friction in sliding isolation bearings.' Earthquake Engineering & Structural Dynamics 44(9): 1409-1425. Kumar, M., Whittaker, A. S. and Constantinou, M. C. (2015). 'Seismic Isolation of Nuclear Power Plants using Sliding Bearings.' Technical Report MCEER-15-0006. Mokha, A., Constantinou, M. C., and Reinhorn, A. M. (1988). 'Teflon bearings in aseismic base isolation: Experimental studies and mathematical modeling.' Report NCEER-88-0038, University at Buffalo, State University of New York, Buffalo, NY. Newmark, N. M. a. H., W. J. (1982). Earthquake Spectra abd Design, Earthquake Engineering Research Institute, Berkeley, California, USA. Shahi, S. K. (2013). 'A Propabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment.' Ph.D, Stanford University, Civil and Enviromental Department. Shahi, S. K. a. B., J. W. (2014). An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions. Singh, J. P. (1985). 'Earthquake Ground Motions: Implications for Designing Structures and Reconciling Structural Damage.' Earthquake Spectra 1(2): 239-270. Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A. (1997). 'Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity.' Seismological Research Letters 68(1): 199-222. 內政部營建署 (2011)。建築物耐震設計規範及解說,台北,台灣。 周蔚恩 (2017)。 鋼造組合式構架設計與振動台試驗反應與分析,國立台灣科技大學營建工程系碩士論文。 游豐碩 (2016)。 近斷層地震對結構減震系統效益之影響研究,國立臺灣大學土木工程學系碩士論文。 劉家仁 (2015)。 近斷層地震對結構隔減震系統效益之影響研究:單自由度系統,國立臺灣大學土木工程學系碩士論文。 龔琬茜 (2017)。 非線性黏性阻尼器建築結構受近斷層地震作用之振動台試驗與分析,國立臺灣大學土木工程學系碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72401 | - |
| dc.description.abstract | 隔震系統常被運用來提高結構的耐震能力,延長週期使隔震器上方之加速度降低,因此對於上部結構來說,加入隔震器可降低輸入能量,使上部結構受設計地震下得以保持彈性,但降低加速度的代價則是產生較大的位移反應。對於遠域地震而言,隔震系統已被證實能夠發揮作用,有效地提高結構耐震能力。近斷層地震與遠域地震最大的不同就是近斷層地震的速度歷時中具有一個明顯的較長週期的速度脈衝,會造成隔震器產生過大的位移,導致結構物傾倒或隔震器壞掉。
本研究於國家地震工程研究中心第二實驗室進行振動台試驗,其振動台特點是具有長衝程及高速度之性能,可以模擬近斷層地震具有速度脈衝之特性。本試驗利用此振動台模擬摩擦單擺隔震系統輸入五組歷時,分別是短脈衝週期之10筆歷時、中脈衝週期之10筆歷時、無脈衝之10筆歷時、人工地震之10筆歷時以及台灣具代表性之5筆地震歷時,探討不同種類之歷時對隔震器反應之影響。 本研究結果指出,速度脈衝不一定會使隔震器產生大位移,而脈衝週期對隔震器反應有很大的影響;在平均反應譜相似的前提,脈衝型歷時之隔震位移的確會比無脈衝歷時之隔震位移大;即使使用反應譜擬合得到反應譜相似的人工地震歷時,脈衝型地震歷時仍對隔震器造成較大的反應;加入垂直向地震歷時,加速度反應有略高一些,而隔震位移並無明顯變化。另外,以本試驗結果來探討等效線性之適用性,並比較隔震位移與不同地表歷時參數(如最大地表加速度、最大地表速度等等)之關係。最後使用OpenSees中FPBearingPTV模型建立隔震系統之數值模型,以試驗結果修改模型參數,得以模擬真實隔震位移。 | zh_TW |
| dc.description.abstract | The isolation systems are used to improve seismic capacity of the structure, increasing period makes the acceleration of superstructure decrease. Therefore, adding isolators can decrease the input energy, so that the superstructure keeps elastic under design earthquake, but the isolator will get lager displacement. In far-fault region, isolation system have been proven to be an effective way to improve structural seismic capacity. The difference between near-fault and far-fault earthquake is that near-fault record has pulse-like signal with a long period of velocity pulse (pulse period, Tp), the signal is able to make the isolator displacement be larger and lead isolation system damage.
This study would perform shaking table tests on a structure with frictional pendulum bearings in the second lab of NCREE (National Center for Research on Earthquake Engineering). The advantage of the shaking table in the second lab of NCREE is that the shaking table has powerful performance, long-stroke and high-velocity, so that it can simulate the characteristics of pulse-like records. The selected records divide into 5 groups: 10 pulse-like records with short Tp (group 1), 10 pulse-like records with medium Tp (group 2), 10 non-pule records (group 3), 10 record of artificial ground motions (group 4), and 5 records of famous earthquakes in Taiwan (group 5). To discuss the effect that the response of the isolation system when the records of different groups hit. The results show that pulse period Tp is an important parameter for the response of isolation system; if the average response spectrum are similar, the average response of the isolation system are larger as the pulse-like records hit than as the non-pule records hit; even if the response spectrum of the artificial records is similar to the one of the pulse-like records, the response of the pulse-like record is larger than the one of the artificial records corresponding to the pulse-like record. In addition, the analytical model, FPBearingPTV, in OpenSees is used to compare with experimental results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:40:14Z (GMT). No. of bitstreams: 1 ntu-107-R05521218-1.pdf: 40688985 bytes, checksum: 0565c68177d10e526f8144e4b70563b0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT iii 目錄 v 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究重點及內容 1 1.3 論文結構 2 第二章 文獻回顧 3 2.1 脈衝型地震與脈衝週期 3 2.1.1 Somerville et al.(1997) 3 2.1.2 Baker(2007) 3 2.1.3 Shahi and Baker(2014) 5 2.2 脈衝型地震對隔震器位移之影響 6 2.3 台灣耐震設計規範 7 第三章 脈衝型地震歷時之縮放及挑選 17 3.1 試驗前數值模擬分析 17 3.2 目標設計反應譜 17 3.3 地震歷時之縮放方法 17 3.4 試驗歷時挑選方式 18 第四章 振動台試驗規劃 25 4.1 前言 25 4.2 隔震器之設計 25 4.3 鋼構架與質量塊之介紹 26 4.3.1 兩層樓組合式鋼構架 26 4.3.2 底梁構架 26 4.3.3 質量塊 26 4.4 地震模擬振動台 27 4.5 試驗配置及其感測器佈設 27 4.5.1 Case 1感測器佈設 28 4.5.2 Case 2感測器佈設 28 4.6 試驗流程 29 第五章 試驗結果與討論 43 5.1 前言 43 5.2 試驗地表歷時之檢核 43 5.3 Motion Capture訊號處理 44 5.4 感測器時間軸之校正 45 5.5 試驗之隔震器反應 45 5.5.1 速度脈衝對隔震器反應之影響 46 5.5.2 彈性反應譜與隔震器反應之關係 47 5.5.3 等效線性方法對隔震器位移之預估 47 5.6 隔震器位移與地表歷時之關係 48 5.6.1 隔震器位移與地表歷時參數之關係 48 5.6.2 隔震器位移與地表速度歷時比對圖 49 5.7 垂直向地震對隔震器之影響 50 第六章 OpenSees數值模擬 61 6.1 前言 61 6.2 OpenSees軟體介紹 61 6.3 隔震器模型介紹 61 6.4 分析數值模型之設定 62 6.5 分析與試驗結果之比較 63 6.6 小結 64 第七章 結論與建議 69 7.1 結論 69 7.2 建議 70 參考文獻 71 附錄A. 挑選的歷時及其反應譜 73 A.1 水平向歷時 74 A.2 垂直向歷時 94 附錄B. 檢驗試驗振動台歷時 103 B.1 速度脈衝之判定 103 B.2 加速度反應譜之比對 107 附錄C. Case 1試驗結果 115 C.1 遲滯迴圈 115 C.2 隔震加速度歷時折減圖 122 C.3 隔震器位移與地表位移歷時圖 130 C.4 隔震器位移與地表速度歷時圖 137 附錄D. Case 2試驗結果 159 D.1 遲滯迴圈 159 D.2 各樓層水平向加速度歷時 166 D.3 隔震器位移與地表位移歷時比對圖 174 附錄E. 分析與試驗之比對 183 E.1 遲滯迴圈比對圖 183 E.2 隔震器位移及剪力歷時比對圖 190 | |
| dc.language.iso | zh-TW | |
| dc.subject | 隔震 | zh_TW |
| dc.subject | 摩擦單擺隔震器 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 脈衝週期 | zh_TW |
| dc.subject | 近斷層地震 | zh_TW |
| dc.subject | near-fault ground motion | en |
| dc.subject | isolation system | en |
| dc.subject | frictional pendulum bearing | en |
| dc.subject | shaking table test | en |
| dc.subject | pulse period | en |
| dc.title | 摩擦單擺隔震結構受近斷層地震作用之振動台試驗與分析 | zh_TW |
| dc.title | Experimental and Analytical Study of a Structure with Frictional Pendulum Bearings Subject to Near-Fault Ground Motions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃震興,汪向榮 | |
| dc.subject.keyword | 摩擦單擺隔震器,隔震,近斷層地震,脈衝週期,振動台試驗, | zh_TW |
| dc.subject.keyword | frictional pendulum bearing,isolation system,near-fault ground motion,pulse period,shaking table test, | en |
| dc.relation.page | 198 | |
| dc.identifier.doi | 10.6342/NTU201802973 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 39.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
