Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72400
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊
dc.contributor.authorTing-Chun Panen
dc.contributor.author潘亭均zh_TW
dc.date.accessioned2021-06-17T06:40:10Z-
dc.date.available2021-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationReference
1. Chen, S.L. and T.R. Morgan, The Natural History of Hepatitis C Virus (HCV) Infection. International Journal of Medical Sciences, 2006. 3(2): p. 47-52.
2. WHO. Hepatitis C. 2017; Available from: http://www.who.int/news-room/fact- sheets/detail/hepatitis-c.
3. Lindenbach, B.D. and C.M. Rice, Unravelling hepatitis C virus replication from genome to function. Nature, 2005. 436(7053): p. 933.
4. Romero-Brey, I., et al., Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication. PLOS Pathogens, 2012. 8(12): p. e1003056.
5. Failla, C., L. Tomei, and R. De Francesco, Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. Journal of virology, 1994. 68(6): p. 3753-3760.
6. Egger, D., et al., Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. Journal of virology, 2002. 76(12): p. 5974-5984.
7. Lohmann, V., et al., Biochemical properties of hepatitis C virus NS5B RNA- dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. Journal of virology, 1997. 71(11): p. 8416-8428.
8. Huang, Y., et al., Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology, 2007. 364(1): p. 1-9.
9. Appel, N., et al., Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog, 2008. 4(3): p. e1000035.
10. Masaki, T., et al., Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol, 2008. 82(16): p. 7964-76.
11. Brass, V., et al., An amino-terminal amphipathic α-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. Journal of Biological Chemistry, 2002. 277(10): p. 8130-8139.
12. Lim, P.J., et al., Correlation between NS5A dimerization and HCV replication. Journal of Biological Chemistry, 2012: p. jbc. M112. 376822.
13. Kaneko, T., et al., Production of Two Phosphoproteins from the NS5A Region of the Hepatitis C Viral Genome. Biochemical and Biophysical Research Communications, 1994. 205(1): p. 320-326.
14. Masaki, T., et al., Involvement of hepatitis C virus NS5A hyperphosphorylation mediated by casein kinase I-alpha in infectious virus production. J Virol, 2014. 88(13): p. 7541-55.
15. Ross-Thriepland, D. and M. Harris, Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation. J Virol, 2014. 88(3): p. 1421-32.
16. Ross-Thriepland, D., J. Mankouri, and M. Harris, Serine Phosphorylation of the Hepatitis C Virus NS5A Protein Controls the Establishment of Replication Complexes. Journal of Virology, 2015. 89(6): p. 3123-3135.
17. Blight, K.J., A.A. Kolykhalov, and C.M. Rice, Efficient Initiation of HCV RNA Replication in Cell Culture. Science, 2000. 290(5498): p. 1972.
18. Chong, W.M., et al., Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication. J Biol Chem, 2016. 291(8): p. 3918- 31.
19. Hsu, S.-C., et al., Serine 235 Is the Primary NS5A Hyperphosphorylation Site Responsible for Hepatitis C Virus Replication. Journal of Virology, 2017. 91(14): p. e00194-17.
20. Lee, K.-Y., Molecular Mechanisms of NS5A S235 Phosphorylation-Mediated HCV Replication, in Graduate Institute of Biochemistry and Molecular Biology, College of Medicine. 2016, National Taiwan University.
21. Lee, K.-Y., et al., Phosphorylation of serine 235 of the hepatitis C virus non- structural protein NS5A by multiple kinases. PloS one, 2016. 11(11): p. e0166763.
22. Flotow, H., et al., Phosphate groups as substrate determinants for casein kinase I action. Journal of Biological Chemistry, 1990. 265(24): p. 14264-14269.
23. Hsu, S.-C., Mechanisms of Sequential Phosphorylation of the Hepatitis C Virus Non-Structural Protein NS5A, in Institute of Biochemistry and Molecular Biology, College of Medicine. 2017, National Taiwan University.
24. Turriziani, B., et al., On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology, 2014. 3(2): p. 320-332.
25. Zhang, Y., et al., Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification–Mass Spectrometry-based Protein–Protein
Interaction Analysis. Journal of proteome research, 2017. 16(8): p. 3068-3082.
26. Boersema, P.J., et al., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols, 2009. 4(4): p. 484.
27. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature biotechnology, 2008. 26(12): p. 1367.
28. Cox, J., et al., Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of proteome research, 2011. 10(4): p. 1794- 1805.
29. Tyanova, S., T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature protocols, 2016. 11(12): p. 2301.
30. Hulsen, T., J. de Vlieg, and W. Alkema, BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics, 2008. 9(1): p. 488.
31. Kovalchik, S., RISmed: download content from NCBI databases. R package version, 2015. 2(5).
32. Rösch, K., et al., Quantitative lipid droplet proteome analysis identifies Annexin A3 as a cofactor for HCV particle production. Cell reports, 2016. 16(12): p. 3219-3231.
33. Reimand, J., et al., g: Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic acids research, 2016. 44(W1): p. W83-W89.
34. Szklarczyk, D., et al., STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research, 2014. 43(D1): p. D447- D452.
35. Bradford, D., et al., Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256. American Journal of Physiology-Cell Physiology, 2014. 307(2): p. C123-C139.
36. Sultan, M., et al., A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008. 321(5891): p. 956-960.
37. Miller, M.L., et al., Linear motif atlas for phosphorylation-dependent signaling. Sci. Signal., 2008. 1(35): p. ra2-ra2.
38. Park, C., et al., Pim kinase interacts with nonstructural 5A protein and regulates hepatitis C virus entry. Journal of virology, 2015: p. JVI. 01707-15.
39. Narhi, L.O., et al., Effect of Three Elution Buffers on the Recovery and Structure of Monoclonal Antibodies. Analytical Biochemistry, 1997. 253(2): p. 236-245.
40. Radic-Sarikas, B., et al., Enhancing cognate target elution efficiency in gel-free chemical proteomics. EuPA Open Proteomics, 2015. 9: p. 43-53.
41. CHEN, P.-Y., LC-MS/MS analysis of proteins interacting with hyper- vs. hypo- phosphorylated HCV NS5A protein, in Graduate Institute of Biochemistry and Molecular Biology, College of Medicine. 2017, National Taiwan University.
42. Tellinghuisen, T.L., K.L. Foss, and J. Treadaway, Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS pathogens, 2008. 4(3): p. e1000032.
43. Chen, Y.-C., et al., Polo-like kinase 1 is involved in hepatitis C virus replication by hyperphosphorylating NS5A. Journal of virology, 2010. 84(16): p. 7983-7993.
44. Goonawardane, N., et al., Phosphorylation of serine 225 in hepatitis C virus NS5A regulates protein-protein interactions. Journal of virology, 2017: p. JVI. 00805-17.
45. Kwofie, S.K., et al., HCVpro: hepatitis C virus protein interaction database. Infection, Genetics and Evolution, 2011. 11(8): p. 1971-1977.
46. Çevik, R.E., et al., Hepatitis C virus NS5A targets the nucleosome assembly protein NAP1L1 to control the innate cellular response. Journal of virology, 2017: p. JVI. 00880-17.
47. Lau, H.-T., et al., Comparing SILAC-and stable isotope dimethyl-labeling approaches for quantitative proteomics. Journal of proteome research, 2014. 13(9): p. 4164-4174.
48. Guo, L., et al., The hepatitis C viral nonstructural protein 5A stabilizes growth- regulatory human transcripts. Nucleic acids research, 2018. 46(5): p. 2537- 2547.
49. Huang, L., et al., Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA- binding protein. J Biol Chem, 2005. 280(43): p. 36417-28.
50. Maqbool, M.A., et al., Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes. Journal of virology, 2013: p. JVI. 00585-12.
51. Tomson, B.N. and K.M. Arndt, The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2013. 1829(1): p. 116-126.
52. Rongrui, L., et al., Epigenetic mechanism involved in the HBV/HCV-related hepatocellular carcinoma tumorigenesis. Current pharmaceutical design, 2014. 20(11): p. 1715-1725.
53. Takahashi, A., et al., SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Molecular cell, 2011. 43(1): p. 45-56.
54. Sobhian, B., et al., HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Molecular cell, 2010. 38(3): p. 439-451.
55. Marazzi, I., et al., Suppression of the antiviral response by an influenza histone mimic. Nature, 2012. 483(7390): p. 428.
56. Lieber, M.R., et al., Mechanism and regulation of human non-homologous DNA end-joining. Nature reviews Molecular cell biology, 2003. 4(9): p. 712.
57. Saitou, K., et al., Hepatitis C virus-core protein facilitates the degradation of Ku70 and reduces DNA-PK activity in hepatocytes. Virus research, 2009. 144(1- 2): p. 266-271.
58. Baek, K.-H., et al., Overexpression of hepatitis C virus NS5A protein induces chromosome instability via mitotic cell cycle dysregulation. Journal of molecular biology, 2006. 359(1): p. 22-34.
59. Ferguson, B.J., et al., DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. elife, 2012. 1: p. e00047.
60. Franz, K.M., et al., STING-dependent translation inhibition restricts RNA virus replication. Proceedings of the National Academy of Sciences, 2018: p. 201716937.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72400-
dc.description.abstractC 型肝炎病毒(Hepatitis C virus, HCV)之非結構性蛋白 5A (non-structure protein 5A, NS5A)是一個對病毒繁殖重要的磷酸化蛋白,它有兩個磷酸化態: 低度及高度磷酸化 NS5A,被認為會招募不同的交互作用宿主蛋白來執行不同的 功能。我們先前的研究指出第 235 號絲氨酸(S235)的磷酸化是最主要造成的 NS5A 高度磷酸化的事件,S235 磷酸化是由第一型酪蛋白激酶(casein kinase I isoform alpha)負責,其需要第 232 絲氨酸(S232)先被磷酸化。然而,有兩個 議題仍待解決:1)哪些蛋白質會被低度及高度磷酸化的 NS5A 招募來協助它們 的功能,2)哪一個激酶負責 S232 磷酸化,進而造成 NS5A 的高度磷酸化態。在 本篇研究中,我們建立的一個結合了兩步驟之磁珠上蛋白酶消化及同位素雙甲基 標定的親和性純化質譜儀方法,並用了抗低度及抗高度磷酸化態 NS5A 之專一性 抗體來鑑定低度及高度磷酸化態 NS5A 的交互作用蛋白,我們鑑定到第二型聚合 酶相關因子一複合體(polymerase II-associated factor I complex, Paf1 complex)的 成員為潛在的高度磷酸化 NS5A 的交互作用蛋白:我們也結合了貝氏定理之激酶 排序,鑑定出 DNA 依賴型蛋白質激酶之催化單元(DNA-dependent protein kinase catalytic subunit, PRKDC)為低度磷酸化 NS5A 的交互作用蛋白,與此一致地, 抑制激酶活性或抑制激酶基因轉譯皆降低 S232 磷酸化,上述結果暗示了一個 PRKDC 磷酸化 S232 的新角色。zh_TW
dc.description.abstractThe hepatitis C virus (HCV) non-structural 5A protein (NS5A) is a phosphoprotein critical to virus propagation. It has two phosphorylation states: hypo- and hyper- phosphorylated NS5A which are believed to recruit different host interacting proteins to execute distinct functions. Our previous studies showed that serine 235 (S235) phosphorylation is a primary event accounting for hyper-phosphorylated NS5A. S235 is phosphorylated by casein kinase I isoform alpha that requires S232 to be phosphorylated/primed first. However, two issues remain to be solved: 1) what proteins hypo- and hyper-phosphorylated NS5A recruit to facilitate their functions in HCV- infected cells, 2) which kinase is responsible for S232 phosphorylation, thus leading to NS5A hyper-phosphorylation. Here, we establish an affinity purification-mass spectrometry (AP-MS) approach combining on-bead two step digestion and stable isotope dimethyl labeling and use hypo- and hyper-phosphorylated NS5A-specific antibodies to identify the interactors of hypo- and hyper-phosphorylated NS5A. We identified the polymerase II-associated factor I complex (Paf1 complex) proteins as potential interactors of hyper-phosphorylated NS5A. Moreover, by combining the AP- MS result and a kinase ranking based on Bayes’ theorem, we identified DNA-dependent protein kinase catalytic subunit (PRKDC) as an interactor of hypo-phosphorylated NS5A. In line with this, inhibition and knockdown of PRKDC reduce S232 phosphorylation. These results suggested a novel role of the Paf1 complex in HCV infection and a new function of PRKDC in phosphorylate NS5A at S232.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:40:10Z (GMT). No. of bitstreams: 1
ntu-107-R05442003-1.pdf: 4990740 bytes, checksum: 359485d0287bce8470506d6a2bccee26 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書........................................................................................................ I
摘要...............................................................................................................................II
Abstract...................................................................................................................... III
Contents ..................................................................................................................... IV
Introduction..................................................................................................................1
Materials and methods ................................................................................................6
Results .........................................................................................................................17
Ser-235 phosphomimetic mutant NS5A clustered in dot-like structures in the perinuclear region.----------------------------------------------------------------------------------17
Optimization of affinity purification-mass spectrometry system for identification of the interactors of ser-235 phosphorylated vs. non-phosphorylated NS5A.--------------18
AP-MS analysis of interactors of ser-235 phosphoablatant vs. phosphomimetic mutant NS5A showed little correlation among experimental replicates. ----------------21
AP-MS analysis of interactors of p56 vs. p58 showed high correlation among experimental replicates.----------------------------------------------------------------------------22
Bioinformatics analysis of p56 and p58 interactors. -----------------------------------------23
Bayes’ analysis prioritized CSNK2A1, PRKDC, CSNK1A1, and PLK1 for NS5A ser- 232 phosphorylation. -------------------------------------------------------------------------------26
PRKDC and CSNK1A1 inhibitors reduced NS5A ser-232 phosphorylation and p58, whereas CSNK2A1 and PLK1 inhibitors did not.--------------------------------------------27
PRKDC knockdown reduced NS5A ser-232 phosphorylation and p58. -----------------28
Discussion ...................................................................................................................30
Figures.........................................................................................................................38
Reference ....................................................................................................................53
dc.language.isoen
dc.subjectC型肝炎病毒zh_TW
dc.subject蛋白質交互作用zh_TW
dc.subject蛋白質質譜zh_TW
dc.subject非結構性蛋白5Azh_TW
dc.subject磷酸化zh_TW
dc.subjectNS5Aen
dc.subjectHCVen
dc.subjectprotein-protein interactionen
dc.subjectphosphorylationen
dc.subjectprotein mass spectrometryen
dc.title鑑定 C 型肝炎病毒低度及高度磷酸化態非結構性蛋白質 5A 之交互作用蛋白質zh_TW
dc.titleIdentification of the interacting proteins of the hypo- and hyper- phosphorylated HCV NS5Aen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉旻褘,潘思樺
dc.subject.keywordC型肝炎病毒,蛋白質交互作用,蛋白質質譜,非結構性蛋白5A,磷酸化,zh_TW
dc.subject.keywordHCV,protein-protein interaction,protein mass spectrometry,NS5A,phosphorylation,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201803592
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved