Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇志杰
dc.contributor.authorJun-Chen Huangen
dc.contributor.author黃浚宸zh_TW
dc.date.accessioned2021-06-17T06:38:22Z-
dc.date.available2018-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation中文部分
丁澈士(2008)。半感潮性濕地水文系統與滯洪功能可行性研究-以大鵬灣鵬村濕地為例。農業工程學報,第54卷第一期:,56-69頁。
交通部中央氣象局氣候統計,每日雨量資料(2016、2017)。檢自
https://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm
林其郁(2012)。台灣地區水體中水氡之空間分布初探。國立臺灣大學 海洋研究所碩士論文。共65頁。
洪嘉穗(2004)。大鵬灣及七股潟湖汞與營養鹽之生地化學研究。國立中山大學海洋地質及化學研究所碩士論文。共136頁。
洪佩瑩(2001)。大鵬灣碳及營養鹽之生地化作用及通量研究。國立中山大學海洋地質及化學研究所碩士論文。共156頁。
洪聖唐、尤皓正、于嘉順(2012)以三維非結構網格模式模擬大鵬灣之溫鹽與潮流循環影響。第34屆海洋工程研討會。國立成功大學。
陳志芳、賴勝耀(2006)。港灣地區地下水壓及地層下陷之常態監測研究(1/4)。交通部運輸研究所。出版品編號:95-53-7195。
許鳳心(2018)。以水中鐳同位素之源匯傳輸探討台灣海峽沿岸海底地下水滲流之現象。國立臺灣大學海洋研究所博士論文。共119頁。
張堯禮(2015)。利用水氡及鐳同位素建立高屏沿岸海底湧泉輸出及通量。國立臺灣大學海洋研究所碩士論文。共68頁。
經濟部中央地質調查所水文地質資料庫,水文地質資料。檢自http://hydro.moeacgs.gov.tw/plain/
經濟部中央地質調查所屏東平原地下水補注地質敏感區劃定計畫書(2014)。檢自http://www.moeacgs.gov.tw/newlaw/newlaw.htm
經濟部水利署地理資訊倉儲中心水資源資料,地下水水位(2016、2017)。檢自https://gic.wra.gov.tw/gic/Water/Space/WaterMain.aspx
鄭柏欣(2002)。大鵬灣潟湖之潮汐交換作用。國立中山大學海洋地質與化學研究所碩士論文。共112頁。
賴育昭(2009)。大鵬灣水體交換數值模式之研究。國立臺灣海洋大學海洋環境資訊系碩士論文。共73頁。
蘇志杰(2000)。以多示蹤劑法探討東海之沉積動力學。國立臺灣大學海洋研究所博士論文。共205頁。
英文部分
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. and Taniguchi M. (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3-33.
Burnett, W. C. and Dulaiova, H. (2003). Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of
Environmental Radioactivity, 69, 21-35.
Burnett, W. C. and Dulaiova, H. (2006). Radon as a tracer of submarine groundwater
discharge into a boat basin in Donnalucata, Sicily. Continental Shelf Research, 26, 862-873.
Burnett W. C., Peterson, R., Moore, W. S. and Oliveira, de J. (2008). Radon and radium isotopes as tracers of submarine groundwater discharge - Results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine and Shelf Science, 76, 501-511.
Charette, M. A., Dulaiova, H., Gonneea, M. E., Henderson, P. B., Moore, W.S., Scholten, J. C. and Pham, M. K. Geotraces radium isotopes interlaboratory comparison experiment. Methods, 10, 451-463.
Charette, M. A., Moore, W. S. and Burnett, W. C. (2007). Uranium- and Thorium-Series nuclides as tracers of submarine groundwater discharge. Radioactivity in the Environment, 13, 150-191.
Dulaiova, H. and Burnett, W. C. (2004). An efficient method for γ-spectrometric determination of radium-226,228 via manganese fibers. Methods, 2, 256-261.
Garcia-Solsona, E., Garcia-Orellana, J., Masque, P. and Dulaiova, H. (2008). Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry, 109, 198-219.
Gonneea, M. E., Morris, P. J., Dulaiova, H. and Charette, M. A. (2008). New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109, 250-267.
Hancock, G., Webster, I. T., Ford, P. W. and Moore, W. S. (2000). Using Ra isotopes to examine transport processes controlling benthic fluxes into a shallow estuarine lagoon. Geochimica et Cosmochimica Acta, 64, 3685-3699.
Ji, T., Du, J., Moore, W. S., Zhang, G., Su, N. and Zhang, J. (2013). Nutrient inputs to a Lagoon through submarine groundwater discharge: The case of Laoye Lagoon, Hainan, China. Journal of Marine Systems, 111-112, 253-262.
Kjerfve, B. and Magill, K. E. (1989). Geomorphic and hydrodynamic characteristics of shallow coastal lagoons. Marine Geology, 88, 187-199.
Krest, J. M., Moore, W. S. and Gardner, L. R. (2000). Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochemical Cycles, 14, 167-176.
Kim, G., Ryu, J. W., Yang, H. S. and Yun, S. T. (2005). Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth and Planetary Science Letters, 237, 156-166.
Kim, G., Ryu, J. W. and Hwang D. W. (2008). Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Marine Chemisrty, 109, 307-317.
Lauria, D. C., Almeida, R. M. R. and Sracek, O. (2004). Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the Coastal Zone of the State of Rio de Janeiro, Brazil. Environmental Geology, 47, 11-19.
Lin, I. T., Wang C. H., Lin, S. and Chen, Y. G. (2011). Groundwater-seawater interactions off the coast of southern Taiwan: Evidence from environmental isotopes. Journal of Asian Earth Sciences, 41, 250-262.
Moore, D. G. and Scott, M. R. (1986). Behavior of 226Ra in the Mississippi river mixing zone. Journal of Geophysical Research, 91, 14317-14329.
Moore, W. S. (1976). Sampling 228Ra in the deep ocean. Deep-Sea Research, 23, 647-651.
Moore, W. S. (1984). Radium isotope measurements using germanium detectors. Methods, 223, 407-411.
Moore, W. S. (1999). The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 65, 111-125.
Moore, W. S. (2000). Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research, 105, 22117-22122.
Moore, W. S. (2000). Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 1993-2007.
Moore, W. S. (2003). Sources and flux of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, 66, 75-93.
Moore, W. S. (2006). Radium isotopes as tracers of submarine groundwater discharge in Sicily. Continental Shelf Research, 26, 852-861.
Moore, W. S. and Arnold, R. (1996). Measurement of 223Ra and 224Ra in coastal waters using delayed coincidence counter. Journal of Geophysical Research, 101, 1321-1329.
Moore, W. S., Blanton, J. O. and Joye, S. B. (2006). Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research, 111, C09006.
Rodellas, V., Garcia-Orellana, J., Masqué, P. and Font-Muñoz, J. S. (2015). The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Marine Chemistry, 171, 107-117.
Rama. and Moore, W. S. (1996). Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochimica et Cosmochimica Acta, 60, 4645-4652.
Su, N., Burnett, W. C. and Maclntyre, H. L. (2013). Natural Radon and Radium Isotopes for Assessing Groundwater Discharge into Little Lagoon, AL: Implications for Harmful Algal Blooms. Estuaries and Coasts, 37, 893-910.
Schubert, M., Oberreich, M. and Scholten, J. (2018). Preparation of MnO2 coated fibers for gamma spectrometric measurements - A comparison of four practical approaches. Journal of Environmental Radioactivity, 189, 197-201.
Scholten, J. C., Osvath, I. and Pham, M. K. (2013). 226Ra measurements through gamma spectrometric counting of radon progenies: How significant is the loss of radon?. Marine Chemistry, 156, 146-152.
Smith, C. G., Swarzenski, P. W., Dimova, N. T. and Zhang, J. (2011). Natural Radium and Radon Tracers to Quantify Water Exchange and Movement in Reservoirs. Handbook of Environmental Isotope Geochemistry, pp345-365.
Zhang, L., Zhang, J., Swarzenski, P. W. and Liu, Z. (2011). Radium Isotope Tracers to Evaluate Coastal Ocean Mixing and Residence Times. Handbook of Environmental Isotope Geochemistry, Handbook of Environmental Isotope Geochemistry, pp331-343.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72372-
dc.description.abstract陸域物質藉由河川和海底地下水等傳輸途徑輸送陸域物質進入海洋,而傳統上河川被認為是輸出營養鹽、微量元素和陸域物質至海洋的主要的途徑。河川傳輸的議題被廣為研究,研究河川傳輸營養鹽到海洋的資訊唾手可得。相對於河川而言,海底地下水滲流(submarine groundwater discharge, SGD)存在空間時間的非均性,導致通量的測量極為困難。然而近年研究顯示SGD對於營養和微量元素的輸出不亞於河川輸出的程度,因此備受注目。
大鵬灣,位居地下水資源豐沛之屏東平原,是個由沙嘴和海岸圍成的半封閉淺水潟湖,是陸域與海域交互作用的緩衝地帶。灣內水體由雨水、家庭廢水、養殖廢水、農業廢水及海水混合而成,並無河川注入。灣內僅有一個潮口與海水接觸,故灣內水體與外洋水交換速率不佳,導致水質欠佳。水文地質條件顯示,大鵬灣灣內可能存在海底地下水滲流輸入的潛勢。本研究藉由水體中的放射性鐳同位素(224Ra, 226Ra, 228Ra)評估大鵬灣灣內SGD通量,並進一步探討SGD的季節性變化及其輸入灣內營養鹽通量。
結果顯示,相較於海水、河水等水體,灣內水體四季皆有明顯高鐳同位素活度現象,表示灣內有額外高鐳同位素活度水體補注,額外水體為SGD自然滲流入灣以及由人為方式排放入灣的陸域水體。各季節鐳同位素活度的空間分布存在變化,但大抵呈現灣內東南方水體具有較高鐳同位素活度。此外不同潮時水體鐳同位素變化,與潮汐活動相呼應,呈現高潮位時活度低,此現象表明大鵬灣內水體受Tidal pump影響。根據質量守恆模式(Mass balance model)計算出大鵬灣的每日SGD通量約9.18×104-9.16×105 m3/day,每日流量大約為灣水體積的1%至9.5%左右。
zh_TW
dc.description.abstractRiver discharge is a major pathway for transporting terrestrial materials to the ocean, including nutrients and trace elements, and their fluxes have been widely studied. Although not as obvious as river, the underground flow across the seabed to the coastal ocean, referred to as submarine groundwater discharge (SGD), now has been recognized as a significant contribution to the coastal ocean. However, little is known and studied about SGD in Taiwan.
The Dapeng Bay, located at the Pingtung Plain where is characterized by abundant groundwater resource, is a shallow lagoon with only one outlet for exchanging water with the ocean. Although the water in the Dapeng Bay mainly consists of seawater with domestic, fishing, and agricultural waste waters, the reported hydrogeological conditions in the Pingtung Plain indicate a potential of SGD in the Dapeng Bay. Therefore, this study purposed to investigate SGD in the Dapeng Bay by using naturally occurring radionuclides, Radium (224Ra, 228Ra, and 226Ra), as tracers and further to understand its seasonal variation.
Our results show that high Ra water was observed at the inner part of Dapeng Bay. The high activity at high tide and low one at low tide indicates that the study area is highly influenced by tidal activity. As well, Ra activities in the Dapeng Bay water is much higher than offshore seawater, indicating the possibility of SGD input. Based on mass balance model of Ra, we estimated the SGD flux is 9.18×104-9.16×105 m3/day, accounting for 1~9.5 % of the total volume of the Dapeng Bay.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:38:22Z (GMT). No. of bitstreams: 1
ntu-107-R04241312-1.pdf: 10452541 bytes, checksum: 01027422f9e9e8ee4bf6325e43c40d19 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
表目錄 IX
第一章 緒論 1
1-1前言 1
1-2研究區域 3
1-3研究目的 8
第二章、研究方法 9
2-1實驗原理 11
2-2採樣方法 11
2-2-1 Mn-fiber樣本處理 15
2-2-2沉積物樣本處理 16
2-2-3水體樣本處理 16
2-2-3 CTD 17
2-3 儀器介紹 18
2-3-1 同步延遲計數器(RaDeCC)分析原理 18
2-3-2 伽馬射線能譜儀分析原理 21
第三章、結果 27
3-1水體水文調查結果 27
3-2 鐳同位素分析結果 29
3-2-1 ex224Ra空間分布 29
3-2-2 ex224Ra時間分布 34
3-2-3 長半衰期核種(226Ra、228Ra) 41
3-3 粒徑資料分析結果 41
3-4磷酸鹽分析結果 43
第四章、討論 46
4-1 流量計算 46
4-2營養鹽流量 56
第五章、結論 57
參考文獻 58
dc.language.isozh-TW
dc.subject放射性同位素zh_TW
dc.subject大鵬灣zh_TW
dc.subjectSGDzh_TW
dc.subject鐳同位素zh_TW
dc.subjectDapeng bayen
dc.subjectSGDen
dc.subjectradioisotopeen
dc.subjectradium isotopeen
dc.title利用鐳同位素探討大鵬灣地區海底地下水滲流輸出zh_TW
dc.titleTracing submarine groundwater discharge into Dapeng Bay Southwestern Taiwan by Ra isotopesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭欽慧,林殷田,王珮玲
dc.subject.keyword大鵬灣,SGD,放射性同位素,鐳同位素,zh_TW
dc.subject.keywordDapeng bay,SGD,radioisotope,radium isotope,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201803567
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved