請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72371完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
| dc.contributor.author | Yin-Fu Chen | en |
| dc.contributor.author | 陳胤甫 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:38:19Z | - |
| dc.date.available | 2020-11-13 | |
| dc.date.copyright | 2020-11-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-20 | |
| dc.identifier.citation | [1] L. Umar, I. Firmansyah and R. N. Setiadi, 'Design of Pulse Oximetry Based on Photoplethysmography and Beat Rate Signal Using DS-100 Probe Sensor for SpO2 Measurement,' 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), Depok, Indonesia, 2018, pp. 25-29, doi: 10.1109/ISSIMM.2018.8727725.
[2] Nitzan M, Engelberg S. Three-wavelength technique for the measurement of oxygen saturation in arterial blood and in venous blood. J Biomed Opt. 2009;14(2):024046. doi:10.1117/1.3120496 [3] Barbee, Robert Wayne*†§; Reynolds, Penny S.*§; Ward, Kevin R.*†‡§ ASSESSING SHOCK RESUSCITATION STRATEGIES BY OXYGEN DEBT REPAYMENT, Shock: February 2010 - Volume 33 - Issue 2 - p 113-122 doi: 10.1097/SHK.0b013e3181b8569d [4] Li, Ting et al. “Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy.” Biomedical optics express vol. 6,9 3431-6. 19 Aug. 2015, doi:10.1364/BOE.6.003431 [5] Colquhoun, Douglas Tucker - Schwartz, Jason Durieux, Marcel Thiele, Robert. (2012). Non-invasive estimation of jugular venous Oxygen saturation: A comparison between near infrared spectroscopy and transcutaneous venous oximetry. Journal of clinical monitoring and computing. 26. 91-8. 10.1007/s10877-012-9338-0. [6] Nebout, Sophie, and Romain Pirracchio. “Should We Monitor ScVO(2) in Critically Ill Patients?.” Cardiology research and practice vol. 2012 (2012): 370697. doi:10.1155/2012/370697 [7] Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30(8):1572-1578. doi:10.1007/s00134-004-2337-y [8] Ladakis C, Myrianthefs P, Karabinis A, et al. Central venous and mixed venous oxygen saturation in critically ill patients. Respiration. 2001;68(3):279-285. doi:10.1159/000050511 [9] Lynch, J. M., Buckley, E. M., Schwab, P. J., Busch, D. R., Hanna, B. D., Putt, M. E., Licht, D. J., Yodh, A. G. (2014). Noninvasive optical quantification of cerebral venous oxygen saturation in humans. Academic radiology, 21(2), 162–167. https://doi.org/10.1016/j.acra.2013.10.013 [10] McGee, D.C. and M.K. Gould, Preventing Complications of Central Venous Catheterization. New England Journal of Medicine, 2003. 348(12): p. 1123-1133 [11] Colquhoun DA, Tucker-Schwartz JM, Durieux ME, Thiele RH. Non-invasive estimation of jugular venous oxygen saturation: a comparison between near infrared spectroscopy and transcutaneous venous oximetry. J Clin Monit Comput. 2012;26(2):91-98. doi:10.1007/s10877-012-9338-0 [12] Ruan ZS, Li T, Ren RR, et al. Monitoring tissue blood oxygen saturation in the internal jugular venous area using near infrared spectroscopy. Genet Mol Res. 2015;14(1):2920-2928. Published 2015 Mar 31. doi:10.4238/2015.March.31.23 [13] 葉哲皓, “非侵入式中央靜脈血氧飽和度量測系統之建構與實測”臺灣 大學生醫電子與資訊學研究所碩士學位論文 2019 臺灣大學. [14] 塗是澂, “利用多輸入神經網路及蒙地卡羅組織模型定量中央靜 脈血氧飽和度”臺灣大學生醫電子與資訊學研究所碩士學位論文 2019 臺灣大學. [15] Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995. 47(2): p. 131- 146. [16] Qianqian Fang and David A. Boas, 'Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,' Opt. Express 17, 20178-20190 (2009) [17] L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, 'CONV - Convolution for responses to a finite diameter photon beam incident on multilayered tissues,' Computer Methods and Programs in Biomedicine 54, 141-150 (1997) [18] Henyey, L.G. and J.L. Greenstein, Diffuse radiation in the galaxy. The Astrophysical Journal, 1941. 93: p. 70-83 [19] Delpy, D.T., et al., Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine Biology, 1988. 33(12): p. 1433. [20] ALEXEY N. BASHKATOV, ELINA A. GENINA and VALERY V. TUCHIN, 'Optical properties of skin, subcutaneous, and muscle tissues: A review,' 2011. [21] Tom Lister, Philip A. Wright and Paul H. Chappell, 'Optical properties of human skin,' 2012. [22] Staffan Strömblad, ' Measuring the Optical Properties of Human Muscle Tissue using Time-of-Flight Spectroscopy in the Near Infrared,' 2015. [23] C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique, Phys. Med. Biol. 43 (1998) [24] Valery V. Tuchin, ' Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Third Edition,'2015 [25] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, 'Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,' J. Phys. D: Appl. Phys. 38, 2543-2555 (2005). [26] E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, A. J. Welch, 'Effects of compression on soft tissue optical properties,' IEEE J. Sel. Top. Quantum Electron. 2, 943-950 (1996). [27] R. Marchesini, C. Clemente, E. Pignoli, M. Brambilla, 'Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,' J. Photochem. Photobiol. B 16, 127-140 (1992) [28] E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, 'Optical properties of normal and cancerous human skin in the visible and nearinfrared spectral range,' J. Biomed. Opt. 11, 064026 (2006) [29] C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, 'Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,' Phys. Med. Biol. 43, 2465-2478 (1998). [30] J. J. Xia, E. P. Berg, J. W. Lee, G. Yao, 'Characterizing beef muscles with optical scattering and absorption coe±cients in VIS-NIR region,' Meat Science 75, 78-83 (2007) [31] Lin, B., et al., Anatomical variation of the internal jugular vein and its impact on temporary haemodialysis vascular access: An ultrasonographic survey in uraemic patients. Vol. 13. 1998. 134-8. [32] Turba, U.C., et al., Anatomic relationship of the internal jugular vein and the common carotid artery applied to percutaneous transjugular procedures. Cardiovasc Intervent Radiol, 2005. 28(3): p. 303-6. [33] Di Ninni P, Martelli F, Zaccanti G. The use of India ink in tissue-simulating phantoms. Opt Express. 2010;18(26):26854-26865. doi:10.1364/OE.18.026854 [34] Frederick Ayers, Alex Grant, Danny Kuo, David J. Cuccia, Anthony J. Durkin, 'Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,' Proc. SPIE 6870, Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, 687007 (21 February 2008) [35] Martin M. Tisdall, Llias Tachtsidis, Terence S. Leung, Clare E. Elwell, Martin Smith, 'Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,' J. Biomed. Opt. 12(2) 024002 (1 March 2007) [36] Feldmann A, Schmitz R, Erlacher D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: reliability and validity of the Moxy Monitor. J Biomed Opt. 2019;24(11):1-11. doi:10.1117/1.JBO.24.11.115001 [37] Sorensen, H., et al., Extra-cerebral oxygenation influence on near-infrared-spectroscopydetermined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS4100 and NIRO-200NX. Clin Physiol Funct Imaging, 2015. 35(3): p. 177-84. [38] S. Wray, M. Cope, DT Delpy, JS Wyatt, EOR Reynolds, 'Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,' Biochimica et Biophsica Acta 933, 184-192, 1988. [39] S. Takatani and M. D. Graham, 'Theoretical analysis of diffuse reflectance from a two-layer tissue model,' 1987. [40] M.K. Moaveni, 'A Multiple Scattering Field Theory Applied to Whole Blood,' Ph.D. Dept. of Electrical Engineering, University of Washington, 1970. [41] https://commons.wikimedia.org/wiki/File:Oxy_and_Deoxy_Hemoglobin_Near-Infrared_absorption_spectra.png?uselang=zh-tw [42] http://its.uvm.edu/medtech/tmodule.html [43] https://aneskey.com/venous-oxygen-saturation-monitoring/ [44] https://fineartamerica.com/featured/anatomy-of-human-neck-stocktrek-images.html [45] https://en.wikipedia.org/wiki/Skin [46] 黃贊學, “利用移動式漫反射光譜系統定量子宮頸癌前病變之組織光學參數”臺灣大學生醫電子與資訊學研究所碩士學位論文 2017 臺灣大學 [47] Kolyva C, Ghosh A, Tachtsidis I, Highton D, Cooper CE, Smith M, Elwell CE. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. Neuroimage. 2014 Jan 15;85 Pt 1(Pt 1):234-44. doi: 10.1016/j.neuroimage.2013.05.070. Epub 2013 May 23. PMID: 23707584; PMCID: PMC3898943. [48] Christopher Gilbert (2012) Pulse Oximetry and Breathing Training. Biofeedback: Winter 2012, Vol. 40, No. 4, pp. 137-141 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72371 | - |
| dc.description.abstract | 中央靜脈的血氧飽和度是重要的生理參數,反映人體整體血氧的供給能力、心輸出量是否充足、以及組織器官是否缺氧。在內頸靜脈與中央靜脈血氧飽和度高度相關的基礎下,本研究將針對內頸靜脈進行漫反射光譜的量測,以寬頻近紅外光LED作為光源,並設計出適合貼附人體頸部的探頭,此外,也選用重量輕巧的微型光譜儀,縮小整個硬體系統,使光譜量測更為快速方便。同時,也利用Labview設計出實驗控制介面,除了能即時顯示實驗光譜,也增加了內頸靜脈壓力波形及訊號穩定度的監控,方便整個內頸靜脈的定位及光譜量測,並利用單層固態仿體作為標準待測物,進行實驗量測穩定度及重複性的驗證。 在模擬分析端,藉由超音波量測人體頸部組織結構,並將這些結構資訊代入蒙地卡羅演算法中進行光譜模擬,以Modified Beer Lambert Law方法預測出帶氧血紅素與不帶氧血紅素的濃度變化,並進一步求得血氧飽和度的趨勢變化。 在活體光譜量測上,利用過度換氣調變組織血氧,使內頸靜脈血氧下降,並將量測的活體光譜套入本研究所建立的分析方法,計算血氧下降量,並與文獻結果進行比較,作為系統血氧預測準確性的評估。從實驗結果可看出不同實驗階段的光譜差異,也證明血氧調變的實驗設計和硬體系統相關的設置,能夠滿足內頸靜脈血氧變化量測的需求。 | zh_TW |
| dc.description.abstract | Oxygen saturation level in central vein is a physiological parameter of critical importance. It reflects the overall capability of the human body to transfer oxygen, and if there’s an insufficiency in oxygen level in tissue. My research focuses on using broadband near-infrared LED as a light source to come up with a design that better measurements for the internal jugular vein’s diffusive reflectance spectrum. In addition, a lighter spectroscope is also chosen to reduce the overall size of the hardware and make the whole process easier and more convenient. Through Labview software, I also developed an user interface to monitor the experiment. The interface provides a real-time spectrum of the experiment and is also capable of monitoring JVP wave, which is convenient to locate the internal jugular vein. The system utilizes solid phantom as the standard to verify the stability and the repeatability of the experiment. By measuring human body structure with ultrasound and incorporating the acquired information into the Monte Carlo algorithm to simulate the spectrum, we can assess the optimal spacing between the light source and the detector. This research applies the Modified Beer Lambert Law to forecast the tendency in oxygen saturation levels. We change the saturation level through hyperventilation experiments and calculate the amount of which the saturation level has lowered. From the result of the experiment we can tell that there is a significant difference between the two spectrums of each experiment stage, and we also proved that the setting is sufficient in measuring oxygen saturation levels in the internal jugular veins. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:38:19Z (GMT). No. of bitstreams: 1 U0001-1908202014183100.pdf: 7477552 bytes, checksum: b1543467748f15c49a4e6b7f6c288601 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 致謝....................................................................................................................................I 中文摘要...........................................................................................................................II Abstract............................................................................................................................III 目錄.................................................................................................................................IV 圖目錄.............................................................................................................................VI 表格目錄..........................................................................................................................X 第一章 緒論 1.1 前言...................................................................................................................1 1.2 研究動機...........................................................................................................3 1.3 研究問題...........................................................................................................4 1.4 文獻回顧與探討...............................................................................................5 第二章 技術理論介紹 2.1 人體頸部組織結構...........................................................................................8 2.2 頸靜脈脈搏.......................................................................................................8 2.3 漫反射光譜……...............................................................................................9 2.4 蒙地卡羅演算法.............................................................................................10 2.5 比爾定律.........................................................................................................14 第三章 研究方法及步驟 3.1 光譜量測系統..................................................................................................16 3.2 順向模擬工具..................................................................................................19 3.3 組織模型建立..................................................................................................21 3.4 固態仿體設計..................................................................................................22 3.5 內頸靜脈量測流程..........................................................................................22 3.6 活體血氧調變實驗.........................................................................................23 3.7 逆向光譜擬合工具..........................................................................................24 第四章 實驗結果與討論 4.1 光學系統評估.................................................................................................26 4.1.1 像素與波長換算...................................................................................26 4.1.2 光譜解析度量測...................................................................................27 4.1.3 系統穩定度測試...................................................................................27 4.2 光譜模擬分析.................................................................................................30 4.3 活體實驗結果.................................................................................................31 第五章 結論與未來展望.............................................................................................55 5.1 結論................................................................................................................. 55 5.2 未來展望..........................................................................................................56 參考文獻.........................................................................................................................58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內頸靜脈 | zh_TW |
| dc.subject | 血氧飽和度 | zh_TW |
| dc.subject | 漫反射光譜 | zh_TW |
| dc.subject | 近紅外光譜 | zh_TW |
| dc.subject | 蒙地卡羅演算法 | zh_TW |
| dc.subject | Diffuse Reflectance Spectroscopy | en |
| dc.subject | Near-infrared Spectroscopy | en |
| dc.subject | Internal Jugular Vein | en |
| dc.subject | Oxygen Saturation | en |
| dc.subject | Monte Carlo algorithm | en |
| dc.title | 內頸靜脈血氧飽和度可攜式量測系統的開發與建立 | zh_TW |
| dc.title | Construction of portable diffusive reflectance spectroscopy optical system for internal jugular vein oxygen saturation measurement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許昕(Hsin Hsiu),曾盛豪(Sheng-Hao Tseng) | |
| dc.subject.keyword | 內頸靜脈,血氧飽和度,漫反射光譜,近紅外光譜,蒙地卡羅演算法, | zh_TW |
| dc.subject.keyword | Diffuse Reflectance Spectroscopy,Near-infrared Spectroscopy,Internal Jugular Vein,Oxygen Saturation,Monte Carlo algorithm, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202004082 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-10-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202014183100.pdf 未授權公開取用 | 7.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
