Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72366
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王珮玲
dc.contributor.authorTai-Yi Leeen
dc.contributor.author李岱怡zh_TW
dc.date.accessioned2021-06-17T06:37:59Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation中文部分
游子慧 (2016)。台灣北部關渡溼地微生物甲烷氧化速率研究。國立台灣大學海洋研究所碩士論文。共151頁。
英文部分
Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese-and iron-dependent marine methane oxidation. Science, 325(5937), 184-187.
Bender, M., & Conrad, R. (1993). Kinetics of methane oxidation in oxic soils. Chemosphere, 26(1-4), 687-696.
Blodau, C., & Deppe, M. (2012). Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada. Soil Biology and Biochemistry, 52, 96-98.
Boetius, A., & Wenzhöfer, F. (2013). Seafloor oxygen consumption fuelled by methane from cold seeps. Nature geoscience, 6(9), 725.
Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4(4), 044007.
Bourne, D. G., McDonald, I. R., & Murrell, J. C. (2001). Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Applied and Environmental Microbiology, 67(9), 3802-3809.
Bousquet, P., Ciais, P., Miller, J., Dlugokencky, E., Hauglustaine, D., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E.G., Carouge, C., Langenfelds, R.L., Lathie`re, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L.P., Tyler, S.C. & White, J . (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443(7110), 439.
Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global change biology, 19(5), 1325-1346.
Capone, D. G., & Kiene, R. P. (1988). Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism1. Limnology and Oceanography, 33(4part2), 725-749.
Chang, T.-C., & Yang, S.-S. (2003). Methane emission from wetlands in Taiwan. Atmospheric Environment, 37(32), 4551-4558.
Chowdhury, T. R., & Dick, R. P. (2013). Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Applied soil ecology, 65, 8-22.
Christiansen, J. R., Levy-Booth, D., Prescott, C. E., & Grayston, S. J. (2016). Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest. Ecosystems, 19(7), 1255-1270.
Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28(3), 193-202.
Conrad, R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental microbiology reports, 1(5), 285-292.
Crawford, J. T., Stanley, E. H., Spawn, S. A., Finlay, J. C., Loken, L. C., & Striegl, R. G. (2014). Ebullitive methane emissions from oxygenated wetland streams. Global change biology, 20(11), 3408-3422.
Deborde, J., Anschutz, P., Guérin, F., Poirier, D., Marty, D., Boucher, G., Thouzeau G., Canton, M., Abril, G. (2010). Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science, 89(4), 256-266.
Dlugokencky, E., Masarie, K., Lang, P., & Tans, P. (1998). Continuing decline in the growth rate of the atmospheric methane burden. Nature, 393(6684), 447.
Dlugokencky, E., Nisbet, E. G., Fisher, R., & Lowry, D. (2011). Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1943), 2058-2072.
Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450(7171), 879.
Esson, K. C., Lin, X., Kumaresan, D., Chanton, J. P., Murrell, J. C., & Kostka, J. E. (2016). Alpha and gammaproteobacterial methanotrophs co-dominate the active methane oxidizing communities in an acidic boreal peat bog. Applied and Environmental Microbiology, AEM. 03640-03615.
Ettwig, K. F., Shima, S., Van De Pas‐Schoonen, K. T., Kahnt, J., Medema, M. H., Op Den Camp, H. J., Jetten, M. S. M., Strous, M. (2008). Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental microbiology, 10(11), 3164-3173.
Goodrich, J., Campbell, D., Roulet, N., Clearwater, M., & Schipper, L. (2015). Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog. Journal of Geophysical Research: Biogeosciences, 120(5), 819-831.
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological reviews, 60(2), 439-471.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567.
Hornibrook, E., Bowes, H., Culbert, A., & Gallego-Sala, A. V. (2009). Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences Discussions, 5(3), 2607-2643.
Islam, T., Jensen, S., Reigstad, L. J., Larsen, Ø., & Birkeland, N.-K. (2008). Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences, 105(1), 300-304.
Joabsson, A., Christensen, T. R., & Wallén, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution, 14(10), 385-388.
Kankaala, P., Ojala, A., & Käki, T. (2004). Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 68(3), 297-311.
Keller, J. K., Weisenhorn, P. B., & Megonigal, J. P. (2009). Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry, 41(7), 1518-1522.
Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, J., Silvola, J., & Martikainen, P. J. (1999). Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry, 31(12), 1741-1749.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Paul Fraser, J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Quéré, C. L., Naik, V., O’Doherty, S., Palmer, P., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa1, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E. Zeng, G. (2013). Three decades of global methane sources and sinks. Nature geoscience, 6(10), 813.
Kizilova, A., Yurkov, A., & Kravchenko, I. (2013). Aerobic methanotrophs in natural and agricultural soils of European Russia. Diversity, 5(3), 541-556.
Kludze, H., DeLaune, R., & Patrick, W. (1993). Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 57(2), 386-391.
Kolb, S., Knief, C., Stubner, S., & Conrad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69(5), 2423-2429.
Laanbroek, H. J. (2009). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of botany, 105(1), 141-153.
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37(1), 25-50.
McDonald, I. R., & Murrell, J. C. (1997). The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS microbiology letters, 156(2), 205-210.
Miller, K. E., Lai, C.-T., Friedman, E. S., Angenent, L. T., & Lipson, D. A. (2015). Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain. Soil Biology and Biochemistry, 83, 176-183.
Moore, T., & Roulet, N. (1993). Methane flux: water table relations in northern wetlands. Geophysical Research Letters, 20(7), 587-590.
Morrissey, E. M., Gillespie, J. L., Morina, J. C., & Franklin, R. B. (2014). Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global change biology, 20(4), 1351-1362.
Nisbet, E. G., Dlugokencky, E. J., & Bousquet, P. (2014). Methane on the rise—again. Science, 343(6170), 493-495.
Olsson, L., Ye, S., Yu, X., Wei, M., Krauss, K. W., & Brix, H. (2015). Factors influencing CO 2 and CH 4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences, 12(16), 4965-4977.
Philipp, K., Juang, J.-Y., Deventer, M. J., & Klemm, O. (2017). Methane Emissions from a Subtropical Grass Marshland, Northern Taiwan. Wetlands, 37(6), 1145-1157.
Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831-842.
Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F., Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R., Peng, C., Peng, S., Prigent, C., Schroeder, R., Riley, W. J., Saito, M., Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X., Zhang, B., Zhang, Z., & Zhu, Q. (2017). Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 12(9), 094013.
Rask, H., Schoenau, J., & Anderson, D. (2002). Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology and Biochemistry, 34(4), 435-443.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D.,Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O’Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Steele, P., Takizawa, A., Thornton, B. F.,Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G. R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., & Zhu, Qiuan. (2016). The global methane budget 2000–2012. Earth System Science Data (Online), 8(2).
Saunois, M., Jackson, R., Bousquet, P., Poulter, B., & Canadell, J. (2016). The growing role of methane in anthropogenic climate change. Environmental Research Letters, 11(12), 120207.
Schutte, C. A., Wilson, A. M., Evans, T., Moore, W. S., & Joye, S. B. (2016). Methanotrophy controls groundwater methane export from a barrier island. Geochimica et Cosmochimica Acta, 179, 242-256.
Segarra, K., Samarkin, V., King, E., Meile, C., & Joye, S. (2013). Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry, 115(1-3), 349-361.
Segarra, K. E., Comerford, C., Slaughter, J., & Joye, S. B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta, 115, 15-30.
Segers, R. (1998). Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41(1), 23-51.
Shelley, F., Abdullahi, F., Grey, J., & Trimmer, M. (2015). Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshwater Biology, 60(1), 150-160.
Shindell, D. T., Walter, B. P., & Faluvegi, G. (2004). Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters, 31(21).
Sundh, I., Mikkelä, C., Nilsson, M., & Svensson, B. H. (1995). Potential aerobic methane oxidation in a Sphagnum-dominated peatland—controlling factors and relation to methane emission. Soil Biology and Biochemistry, 27(6), 829-837.
Thauer, R. K., & Shima, S. (2008). Methane as fuel for anaerobic microorganisms. Annals of the New York Academy of Sciences, 1125(1), 158-170.
Timmers, P. H., Suarez-Zuluaga, D. A., van Rossem, M., Diender, M., Stams, A. J., & Plugge, C. M. (2016). Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME journal, 10(6), 1400.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72366-
dc.description.abstract好氧甲烷氧化菌利用甲烷作為單一碳源,氧氣為電子接收者,廣泛分佈於土壤表面,在調節溼地甲烷排放量的重要性佔有一席之地。由於時空尺度上的變異,對於氧氣和甲烷濃度在潮汐週期的變化如何與好氧甲烷氧化作用產生共變,其中的機制仍尚未釐清。本研究在台灣北部關渡溼地進行潮汐週期變化內的分析,欲釐清甲烷通量和好氧甲烷氧化作用間的動態關聯,分別在 2016 年 12 月、2017 年 3 月、5 月和 8 月進行四次採樣。在潮汐週期內的不同時間點,測量現地甲烷通量、表層甲烷濃度和氧氣通量,並採集表層沉積物進行實驗室培養實驗,以估算潛在好氧甲烷氧化速率和好氧甲烷氧化菌的動力學特徵。
研究結果顯示氧氣通量在潮汐週期無明顯變化,影響好氧甲烷氧化作用有限,而潮週內 pmoA 數量和潛在甲烷氧化速率的增加,並未總是與甲烷通量下降一致,顯然甲烷通量在潮汐週期內的消長,除了好氧甲烷氧化作用之外,還受無氧環境的甲烷生成影響。三次潮週內所測量和分析的各種隨潮週變化的參數並無一致性,說明暴露於大氣的時間長短不是影響其變化的主要因素。綜合不同月份的潮週現地測量與分析結果,顯示潛在好氧甲烷氧化速率分別與甲烷通量、pmoA 數量都呈現弱相關性,代表好氧甲烷氧化作用在現地潮週變化下與其他特定變動因子的關連性不高;此外,溫度與甲烷通量和潛在好氧甲烷消耗速率皆呈現非高度相關,表示溫度亦非影響潮週內甲烷氧化作用和甲烷通量的主要因子。由培養實驗可知不同月份潮週所採集的樣品會顯現不同的動力學特徵,代表好氧甲烷氧化菌在樣品中的代謝特性明顯不同。受潮汐影響的關渡溼地環境中,微生物與環境之間有著複雜相互影響,好氧甲烷氧化作用對於甲烷通量的影響力在潮週間並不顯著。
zh_TW
dc.description.abstractAerobic methanotroph is a group of microorganisms widespread in ground surface using methane as sole carbon source and oxygen as electron acceptor. Apparently, it plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Four field campaigns were carried out in December of 2016 and March, May and August of 2017. Methane fluxes, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive kinetic parameters for aerobic methanotrophy.
Our results demonstrated that the oxygen flux into the sediment during a tidal cycle was kept at a similar magnitude, which may infer a limited effect on the aerobic methane oxidation. Besides, the increase of pmoA gene abundance and potential aerobic methane oxidation rate didn’t always coexist with lower methane flux during a tidal cycle, suggesting that the methane flux was controlled by not only aerobic methanotroph but also methanogenesis. No similar pattern could be observed in terms of exposure time among three samplings of different tidal cycles, suggesting the exposure time is not the dominant factor. Weakly and moderately correlations could be found between the potential aerobic methane oxidation rate and either the methane flux or amount of pmoA gene, respectively, which indicated no specific factor could control aerobic methane oxidation and then regulate the methane emission during a tidal cycle. Besides, the sediment temperature was not the main factor affecting the activity of methanotroph and methane flux in a tidal affected wetland. Kinetic characteristics of aerobic methane oxidation were determined from the batch incubations. The maximum potential rate and the half saturation concentration were significantly different among the samples from different sampling campaigns, which inferred the metabolic capability of aerobic methanotrophs have changed through time beside of a tidal period. The interaction of microbes in Guandu wetland was complicated and the rule of aerobic methane oxidation on methane emission may be less significant during a tidal cycle.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:37:59Z (GMT). No. of bitstreams: 1
ntu-107-R04241304-1.pdf: 4383427 bytes, checksum: cda0e43539a8a4c225c75f2f0e768d6e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1-1 全球甲烷循環 1
1-1-1 溼地中產甲烷作用 2
1-1-2 溼地中甲烷氧化作用 3
1-2 甲烷通量 4
1-3 好氧甲烷氧化作用 4
1-3-1 好氧甲烷氧化作用之環境影響因子 4
1-3-2 好氧甲烷氧化菌之分類與分子生物特性 5
1-4 研究動機與目的 7
第二章 實驗方法與材料 8
2-1 採樣地點 8
2-2 採樣方法 12
2-3 現地通量測量 12
2-3-1 甲烷及二氧化碳通量測量 12
2-3-2 溶解氧氣通量測量 12
2-4 好氧甲烷氧化作用培養實驗 13
2-4-1 甲烷氣體濃度測量 13
2-4-2 潛在好氧甲烷氧化速率計算 14
2-5 微生物族群豐度測量 19
2-5-1 標準品製作 19
2-5-2 即時定量聚合酶連鎖反應 19
2-5-3 沉積物中的微生物量計算 20
第三章 實驗結果 22
3-1 現地通量測量 22
3-1-1 甲烷通量測量結果 22
3-1-2 氧氣通量測量結果 22
3-1-3 二氧化碳通量測量結果 22
3-1-4 表層甲烷濃度結果 22
3-2 好氧甲烷氧化作用潛在速率培養 28
3.3 微生物菌群豐度結果 32
第四章 討論 36
4-1 潮週內潛在甲烷氧化速率、通量與微生物數量之關係 36
4-1-1 MO01 潮汐週期 36
4-1-2 MO03 潮汐週期 36
4-1-3 MO04 潮汐週期 37
4-2 潛在甲烷氧化速率與各變動因子之相關性 42
4-2-1 潛在甲烷氧化速率與通量之相關性 42
4-2-2 潛在甲烷氧化速率與微生物量之相關性 43
4-2-3 沉積物溫度與變動因子之相關性 43
4-3 好氧甲烷氧化作用之動力學表現 49
第五章 結論 52
參考文獻 53
附錄 60
dc.language.isozh-TW
dc.subject好氧甲烷氧化作用zh_TW
dc.subject甲烷通量zh_TW
dc.subject潮汐週期zh_TW
dc.subject溼地zh_TW
dc.subjectwetlanden
dc.subjecttidal cycleen
dc.subjectaerobic methane oxidationen
dc.subjectmethane fluxen
dc.title台灣北部關渡溼地潮汐對好氧甲烷氧化作用之影響研究zh_TW
dc.titleTidal Effect on Aerobic Methane Oxidation in Guandu Wetland of Northern Taiwanen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立虹,魏志潾,林殷田
dc.subject.keyword溼地,潮汐週期,好氧甲烷氧化作用,甲烷通量,zh_TW
dc.subject.keywordwetland,tidal cycle,aerobic methane oxidation,methane flux,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201803170
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
Appears in Collections:海洋研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
4.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved