請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72361
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐振哲 | |
dc.contributor.author | Ting-Kai Yuan | en |
dc.contributor.author | 袁廷凱 | zh_TW |
dc.date.accessioned | 2021-06-17T06:37:40Z | - |
dc.date.available | 2021-08-18 | |
dc.date.copyright | 2018-08-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | 1. G. d. p. Raĭzer, 'Gas discharge physics,' (1991).
2. K. Tachibana, 'Current status of microplasma research,' IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006). 3. L. P. Babich, and T. V. Loiko, 'Generalized paschen's law for overvoltage conditions,' IEEE Trans. Plasma Sci., 44 (12), 3243-3248 (2016). 4. E. E. Kunhardt, 'Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas,' IEEE Trans. Plasma Sci., 28 (1), 189-200 (2000). 5. K. H. Schoenbach, and K. Becker, '20 years of microplasma research: A status report,' Eur. Phys. J. D, 70 (2), 22 (2016). 6. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, 'Characterization of a dc atmospheric pressure normal glow discharge,' Plasma Sources Sci. Technol., 14 (4), 700-711 (2005). 7. S. A. Al-Bataineh, E. J. Szili, P. J. Gruner, C. Priest, H. J. Griesser, N. H. Voelcker, R. D. Short, and D. A. Steele, 'Fabrication and operation of a microcavity plasma array device for microscale surface modification,' Plasma Process. Polym., 9 (7), 638-646 (2012). 8. L. Baars-Hibbe, P. Sichler, C. Schrader, N. Lucas, K. H. Gericke, and S. Buttgenbach, 'High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays,' J. Phys. D-Appl. Phys., 38 (4), 510-517 (2005). 9. A. Lehmann, F. Pietag, and T. Arnold, 'Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device,' Clin. Plasma Med., 7-8, 16-23 (2017). 10. X. L. Deng, A. Y. Nikiforov, P. Vanraes, and C. Leys, 'Direct current plasma jet at atmospheric pressure operating in nitrogen and air,' J. Appl. Phys., 113 (2), 9 (2013). 11. P. Mezei, T. Cserfalvi, H. J. Kim, and M. A. Mottaleb, 'The influence of chlorine on the intensity of metal atomic lines emitted by an electrolyte cathode atmospheric glow discharge,' Analyst, 126 (5), 712-714 (2001). 12. P. Bruggeman, and C. Leys, 'Non-thermal plasmas in and in contact with liquids,' J. Phys. D-Appl. Phys., 42 (5), 28 (2009). 13. H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, 'The barrier discharge: Basic properties and applications to surface treatment,' Vacuum, 71 (3), 417-436 (2003). 14. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, 'Microplasmas: Sources, particle kinetics, and biomedical applications,' Plasma Process. Polym., 5 (4), 322-344 (2008). 15. K. Greda, K. Swiderski, P. Jamroz, and P. Pohl, 'Flowing liquid anode atmospheric pressure glow discharge as an excitation source for optical emission spectrometry with the improved detectability of ag, cd, hg, pb, tl, and zn,' Anal. Chem., 88 (17), 8812-8820 (2016). 16. M. R. Webb, F. J. Andrade, and G. M. Hieftje, 'High-throughput elemental analysis of small aqueous samples by emission spectrometry with a compact, atmospheric-pressure solution-cathode glow discharge,' Anal. Chem., 79 (20), 7807-7812 (2007). 17. M. R. Webb, F. J. Andrade, and G. M. Hieftje, 'Use of electrolyte cathode glow discharge (elcad) for the analysis of complex mixtures,' J. Anal. At. Spectrom., 22 (7), 766-774 (2007). 18. L. Bencs, N. Laczai, P. Mezei, and T. Cserfalvi, 'Detection of some industrially relevant elements in water by electrolyte cathode atmospheric glow discharge optical emission spectrometry,' Spectrochimica Acta Part B: Atomic Spectroscopy, 107, 139-145 (2015). 19. B. Mitra, B. Levey, and Y. B. Gianchandani, 'Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing,' IEEE Trans. Plasma Sci., 36 (4), 1913-1924 (2008). 20. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, 'Applied plasma medicine,' Plasma Process. Polym., 5 (6), 503-533 (2008). 21. J. Choi, A. A. H. Mohamed, S. K. Kang, K. C. Woo, K. T. Kim, and J. K. Lee, '900-mhz nonthermal atmospheric pressure plasma jet for biomedical applications,' Plasma Process. Polym., 7 (3-4), 258-263 (2010). 22. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, 'Plasma-surface modification of biomaterials,' Mater. Sci. Eng. R-Rep., 36 (5-6), 143-206 (2002). 23. X. C. Zeng, P. K. Chu, Q. C. Chen, and H. H. Tong, 'Steady-state direct-current plasma immersion ion implantation using an electron cyclotron resonance plasma source,' Thin Solid Films, 390 (1-2), 145-148 (2001). 24. M. Gharagozalian, D. Dorranian, and M. Ghoranneviss, 'Water treatment by the ac gliding arc air plasma,' J. Theor. Appl. Phys., 11 (3), 171-180 (2017). 25. S. K. Sharma, and A. Shyam, 'Design and testing of 45 kv, 50 khz pulse power supply for dielectric barrier discharges,' Rev. Sci. Instrum., 87 (10), 5 (2016). 26. 曾學謙、陳忠城, '電蚊拍電路的研究,' (2015). 27. Y. X. Duan, Y. X. Su, Z. Jin, and S. P. Abeln, 'A field portable plasma source monitor for real-time air particulate monitoring,' Anal. Chem., 72 (7), 1672-1679 (2000). 28. Y. X. Duan, Y. X. Su, Z. Jin, and S. P. Abeln, 'Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis,' Rev. Sci. Instrum., 71 (3), 1557-1563 (2000). 29. X. Yuan, X. Ding, Z. Zhao, X. Zhan, and Y. Duan, 'Performance evaluation of a newly designed dc microplasma for direct organic compound detection through molecular emission spectrometry,' J. Anal. At. Spectrom., 27 (12), 2094 (2012). 30. P. K. Kao, and C. C. Hsu, 'Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand,' Anal Chem, 86 (17), 8757-8762 (2014). 31. W. Zu, Y. Wang, X. Yang, and C. Liu, 'A portable solution cathode glow discharge-atomic emission spectrometer for the rapid determination of thallium in water samples,' Talanta, 173, 88-93 (2017). 32. S. Wu, X. Lu, Z. Xiong, and Y. Pan, 'A touchable pulsed air plasma plume driven by dc power supply,' IEEE Trans. Plasma Sci., 38 (12), 3404-3408 (2010). 33. J. L. Walsh, and M. G. Kong, 'Portable nanosecond pulsed air plasma jet,' Appl. Phys. Lett., 99 (8), 3 (2011). 34. P. Sahay, S. T. Scherrer, and C. J. Wang, 'A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental hg,' Rev. Sci. Instrum., 83 (9), 14 (2012). 35. J. S. Wiley, J. T. Shelley, and R. G. Cooks, 'Handheld low-temperature plasma probe for portable 'point-and-shoot' ambient ionization mass spectrometry,' Anal. Chem., 85 (14), 6545-6552 (2013). 36. I. H. Won, S. K. Kang, J. Y. Sim, and J. K. Lee, 'Ozone-free portable microwave atmospheric air plasma jet,' IEEE Trans. Plasma Sci., 42 (10), 2788-2789 (2014). 37. S. K. Kang, H. Y. Kim, G. S. Yun, and J. K. Lee, 'Portable microwave air plasma device for wound healing,' Plasma Sources Sci. Technol., 24 (3), 12 (2015). 38. M. Thiyagarajan, 'A portable atmospheric air plasma device for biomedical treatment applications,' J. Med. Devices, 7 (1), 7 (2013). 39. J. Parkey, J. Cross, R. Hayes, C. Parham, D. Staack, and A. C. Sharma, 'A battery powered, portable, and self-contained non-thermal helium plasma jet device for point-of-injury burn wound treatment,' Plasma Process. Polym., 12 (11), 1244-1255 (2015). 40. Z. Machala, and D. B. Graves, 'Frugal biotech applications of low-temperature plasma,' Trends in Biotechnology, (2017). 41. N. Skoro, N. Puac, S. Zivkovic, D. Krstic-Milosevic, U. Cvelbar, G. Malovic, and Z. L. Petrovic, 'Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet,' Eur. Phys. J. D, 72 (1), 8 (2018). 42. N. Xu, X. L. Cui, Z. Fang, Y. W. Shi, and R. Y. Zhou, 'A two-mode portable atmospheric pressure air plasma jet device for biomedical applications,' IEEE Trans. Plasma Sci., 46 (4), 947-953 (2018). 43. M. Venugopalan, 'Basic processes in glow-discharge plasmas,' Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 23 (4), 405-417 (1987). 44. M. J. Druyvesteyn, and F. M. Penning, 'The mechanism of electrical discharges in gases of low pressure,' Rev. Mod. Phys., 12 (2), 0087-0174 (1940). 45. S. Glasstone, and A. Hickling, 'Studies in electrolytic oxidation part v the formation of hydrogen peroxide by electrolysis with a glow-discharge anode,' Journal of the Chemical Society, 1772-1773 (1934). 46. H. H. Kellogg, 'Anode effect in aqueous electrolysis,' J. Electrochem. Soc., 97 (4), 133-142 (1950). 47. A. Hickling, and J. K. Linacre, 'Glow-discharge electrolysis .2. The anodic oxidation of ferrous sulphate,' Journal of the Chemical Society, (FEB), 711-720 (1954). 48. A. R. Denaro, and A. Hickling, 'Glow-discharge electrolysis in aqueous solutions,' J. Electrochem. Soc., 105 (5), 265-270 (1958). 49. H. A. Dewhurst, J. F. Flagg, and P. K. Watson, 'Oxidation of aqueous ferrous sulfate by glow discharge,' J. Electrochem. Soc., 106 (4), 366-367 (1959). 50. A. Hickling, and G. R. Newns, 'Glow-discharge electrolysis .4. Formation of hydrazine in liquid ammonia,' Journal of the Chemical Society, (DEC), 5177-& (1961). 51. A. Hickling, and G. R. Newns, 'Glow-discharge electrolysis .5. Contact glow-discharge electrolysis of liquid ammonia,' Journal of the Chemical Society, (DEC), 5186-& (1961). 52. A. Yokohata, and S. Tsuda, 'Silent discharge reactions in aqueous solutions .I. An acidic aqueous solution of ferrous sulfate in atmospheres of helium and argon,' Bull. Chem. Soc. Jpn., 39 (1), 46-+ (1966). 53. Y. Kanzaki, N. Nishimura, and O. Matsumoto, 'On the yields of glow-discharge electrolysis in various atmospheres,' J. Electroanal. Chem., 167 (1-2), 297-300 (1984). 54. Y. Kanzaki, M. Hirabe, and O. Matsumoto, 'Glow-discharge electrolysis of aqueous sulfuric-acid-solution in various atmosphere,' J. Electrochem. Soc., 133 (11), 2267-2270 (1986). 55. T. Cserfalvi, P. Mezei, and P. Apai, 'Emission studies on a glow-discharge in atmospheric-pressure air using water as a cathode,' J. Phys. D-Appl. Phys., 26 (12), 2184-2188 (1993). 56. T. Cserfalvi, and P. Mezei, 'Direct solution analysis by glow-discharge - electrolyte-cathode discharge spectrometry,' J. Anal. At. Spectrom., 9 (3), 345-349 (1994). 57. T. Cserfalvi, and P. Mezei, 'Operating mechanism of the electrolyte cathode atmospheric glow discharge,' Fresenius J. Anal. Chem., 355 (7-8), 813-819 (1996). 58. P. Mezei, T. Cserfalvi, and M. Janossy, 'Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum,' J. Anal. At. Spectrom., 12 (10), 1203-1208 (1997). 59. P. Mezei, T. Cserfalvi, and M. Janossy, 'The gas temperature in the cathode surface - dark space boundary layer of an electrolyte cathode atmospheric glow discharge (elcad),' J. Phys. D-Appl. Phys., 31 (11), L41-L42 (1998). 60. P. Mezei, T. Cserfalvi, M. Janossy, K. Szocs, and H. J. Kim, 'Similarity laws for glow discharges with cathodes of metal and an electrolyte,' J. Phys. D-Appl. Phys., 31 (20), 2818-2825 (1998). 61. Y. S. Park, S. H. Ku, S. H. Hong, H. J. Kim, and E. H. Piepmeier, 'Fundamental studies of electrolyte-as-cathode glow discharge-atomic emission spectrometry for the determination of trace metals in flowing water,' Spectroc. Acta Pt. B-Atom. Spectr., 53 (6-8), 1167-1179 (1998). 62. H. J. Kim, J. H. Lee, M. Y. Kim, T. Cserfalvi, and P. Mezei, 'Development of open-air type electrolyle-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water,' Spectroc. Acta Pt. B-Atom. Spectr., 55 (7), 823-831 (2000). 63. M. A. Mottaleb, Y. A. Woo, and H. J. Kim, 'Evaluation of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace heavy metals in liquid samples,' Microchem J., 69 (3), 219-230 (2001). 64. M. A. Mottaleb, J. S. Yang, and H. J. Kim, 'Electrolyte-as-cathode glow discharge (elcad)/glow discharge electrolysis at the gas-solution interface,' Appl. Spectrosc. Rev., 37 (3), 247-273 (2002). 65. P. Pohl, P. Jamroz, K. Swiderski, A. Dzimitrowicz, and A. Lesniewicz, 'Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emission spectrometry,' Trac-Trends Anal. Chem., 88, 119-133 (2017). 66. Q. He, Z. L. Zhu, and S. H. Hu, 'Flowing and nonflowing liquid electrode discharge microplasma for metal ion detection by optical emission spectrometry,' Appl. Spectrosc. Rev., 49 (3), 249-269 (2014). 67. A. Kitano, A. Iiduka, T. Yamamoto, Y. Ukita, E. Tamiya, and Y. Takamura, 'Highly sensitive elemental analysis for cd and pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow,' Anal Chem, 83 (24), 9424-9430 (2011). 68. A. Q. Leng, Y. Lin, Y. F. Tian, L. Wu, X. M. Jiang, X. D. Hou, and C. B. Zheng, 'Pump- and valve-free flow injection capillary liquid electrode discharge optical emission spectrometry coupled to a droplet array platform,' Anal. Chem., 89 (1), 703-710 (2017). 69. G. Jenkins, J. Franzke, and A. Manz, 'Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (elcad) integrated on a micro-fluidic chip,' Lab Chip, 5 (7), 711-718 (2005). 70. D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, and G. Friedman, 'Nanoscale corona discharge in liquids, enabling nanosecond optical emission spectroscopy,' Angew. Chem.-Int. Edit., 47 (42), 8020-8024 (2008). 71. V. V. Yagov, M. L. Getsina, and B. K. Zuev, 'Use of electrolyte jet cathode glow discharges as sources of emission spectra for atomic emission detectors in flow-injection analysis,' J. Anal. Chem., 59 (11), 1037-1041 (2004). 72. G. Aragay, J. Pons, and A. Merkoci, 'Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection,' Chem. Rev., 111 (5), 3433-3458 (2011). 73. J. R. Chen, and K. C. Teo, 'Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction,' Anal. Chim. Acta, 450 (1-2), 215-222 (2001). 74. J.-S. Lee, M. S. Han, and C. A. Mirkin, 'Colorimetric detection of mercuric ion (hg2+) in aqueous media using DNA-functionalized gold nanoparticles,' Angewandte Chemie, 119 (22), 4171-4174 (2007). 75. B. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, 'A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms,' Biosens Bioelectron, 94, 443-455 (2017). 76. Z. Guo, D. D. Li, X. K. Luo, Y. H. Li, Q. N. Zhao, M. M. Li, Y. T. Zhao, T. S. Sun, and C. Ma, 'Simultaneous determination of trace cd(ii), pb(ii) and cu(ii) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode,' J. Colloid Interface Sci., 490, 11-22 (2017). 77. G. Aragay, J. Pons, and A. Merkoçi, 'Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes,' Journal of Materials Chemistry, 21 (12), 4326 (2011). 78. Y. Kohara, Y. Terui, M. Ichikawa, T. Shirasaki, K. Yamamoto, T. Yamamoto, and Y. Takamura, 'Characteristics of liquid electrode plasma for atomic emission spectrometry,' J. Anal. At. Spectrom., 27 (9), 1457-1464 (2012). 79. D. Van Khoai, T. Yamamoto, Y. Ukita, and Y. Takamura, 'On-chip solid phase extraction-liquid electrode plasma atomic emission spectrometry for detection of trace lead,' Jpn. J. Appl. Phys., 53 (5), 5 (2014). 80. Y. Kohara, Y. Terui, M. Ichikawa, K. Yamamoto, T. Shirasaki, K. Kohda, T. Yamamoto, and Y. Takamura, 'Atomic emission spectrometry in liquid electrode plasma using an hourglass microchannel,' J. Anal. At. Spectrom., 30 (10), 2125-2128 (2015). 81. Z. J. Smith, K. Q. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, 'Cell-phone-based platform for biomedical device development and education applications,' PLoS One, 6 (3), 11 (2011). 82. D. Gallegos, K. D. Long, H. J. Yu, P. P. Clark, Y. X. Lin, S. George, P. Nath, and B. T. Cunningham, 'Label-free biodetection using a smartphone,' Lab Chip, 13 (11), 2124-2132 (2013). 83. K. D. Long, H. Yu, and B. T. Cunningham, 'Smartphone instrument for portable enzyme-linked immunosorbent assays,' Biomed. Opt. Express, 5 (11), 3792-3806 (2014). 84. M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, 'Combined 'dual' absorption and fluorescence smartphone spectrometers,' Opt. Lett., 40 (8), 1737-1740 (2015). 85. C. J. Zhang, J. P. Kim, M. Creer, J. Yang, and Z. W. Liu, 'A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis,' Biosens. Bioelectron., 97, 164-168 (2017). 86. A. J. Das, A. Wahi, I. Kothari, and R. Raskar, 'Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,' Sci Rep, 6, 8 (2016). 87. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, 'Optical fiber smartphone spectrometer,' Opt. Lett., 41 (10), 2237-2240 (2016). 88. C. J. Zhang, G. Cheng, P. Edwards, M. D. Zhou, S. Y. Zheng, and Z. W. Liu, 'G-fresnel smartphone spectrometer,' Lab Chip, 16 (2), 246-250 (2016). 89. C. A. Yang, P. Edwards, K. B. Shi, and Z. W. Liu, 'Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality,' Opt. Lett., 36 (11), 2023-2025 (2011). 90. C. A. Yang, K. B. Shi, P. Edwards, and Z. W. Liu, 'Demonstration of a pdms based hybrid grating and fresnel lens (g-fresnel) device,' Opt. Express, 18 (23), 23529-23534 (2010). 91. P. Edwards, C. J. Zhang, B. G. Zhang, X. Q. Hong, V. K. Nagarajan, B. Yu, and Z. W. Liu, 'Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin,' Sci Rep, 7, 7 (2017). 92. G. Rateni, P. Dario, and F. Cavallo, 'Smartphone-based food diagnostic technologies: A review,' Sensors, 17 (6), 22 (2017). 93. J. C. Contreras-Naranjo, Q. S. Wei, and A. Ozcan, 'Mobile phone-based microscopy, sensing, and diagnostics,' IEEE J. Sel. Top. Quantum Electron., 22 (3), 14 (2016). 94. A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, 'A personalized food allergen testing platform on a cellphone,' Lab Chip, 13 (4), 636-640 (2013). 95. A. Ozcan, 'Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,' Lab Chip, 14 (17), 3187-3194 (2014). 96. A. Roda, E. Michelini, M. Zangheri, M. Di Fusco, D. Calabria, and P. Simoni, 'Smartphone-based biosensors: A critical review and perspectives,' Trac-Trends Anal. Chem., 79, 317-325 (2016). 97. Y. Hayashi, N. Takada, H. Kanda, and M. Goto, 'Effect of fine bubbles on electric discharge in water,' Plasma Sources Sci. Technol., 24 (5), 6 (2015). 98. Y. Hayashi, N. Takada, Wahyudiono, H. Kanda, and M. Goto, 'Hydrogen peroxide formation by electric discharge with fine bubbles,' Plasma Chem. Plasma Process., 37 (1), 125-135 (2017). 99. J. D. Cobine, 'Gaseous conductors,' (1958). 100. P. J. Bruggeman, F. Iza, and R. Brandenburg, 'Foundations of atmospheric pressure non-equilibrium plasmas,' Plasma Sources Science and Technology, 26 (12), 123002 (2017). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72361 | - |
dc.description.abstract | 常壓下微電漿系統因不需在低壓至真空環境下操作、電漿放電體積小,所以可大幅降低昂貴的設備成本與提供較高可攜性質。本研究為結合自製高壓電路模組與手機式光譜儀之裝置,調控電路模組內元件使終端電漿輸出功率提升以提高光譜分析時金屬的強度,並利用自製單色儀結合智慧型手機以便收取電漿光源,進而分析金屬光譜,整個裝置提供了水溶液重金屬檢測的可能性。本研究之自製高壓電路模組屬於DC to DC的升壓模組,其電路配置由振盪電路、變壓器與倍壓電路組成。振盪電路將電流轉換為交流電,接著經由變壓器的固定線圈數升壓,最後再以兩倍壓電路進行倍壓與整流,使最後輸出為高壓直流電。此外,上述組成電路三大區域中以調控振盪電路部分之元件為主要研究方向,並探討模組外串聯電感或鎮流電阻對於電漿電壓電流影響。本研究使用針尖至水溶液微電漿系統,裝置由金屬針與銅極組成,定義針尖為高壓端,銅極上濾紙內之待測溶液為低壓端,以電漿高能量密度性質使待測溶液汽化與激發,並使用光纖收取溶液內之重金屬元素激發後放出之特徵光,最後利用光譜分析溶液內之重金屬。本研究利用上述實驗結果結合微電漿裝置與智慧型手機為可攜式重金屬檢測器,使用行動電源提供5 V直流電,經由高壓模組輸出高壓直流電以產生電漿,電漿光源首先通過狹縫成為平行光,接著通過光柵產生繞射並分光於手機內部感光元件,此時透過手機內相機拍照擷取,再以程式語言判斷分析,即可定性溶液內金屬元素。 | zh_TW |
dc.description.abstract | The microplasma system under normal pressure does not need to operate in a low-pressure to vacuum environment, and the plasma discharge volume is small, so the cost of the equipment can be greatly reduced and the high portability can be provided. This study combines a home-made high voltage circuit module with a smartphone spectrometer device, and regulates the components in the circuit module to increase the output power of the plasma to improve the intensity of the metal during spectral analysis, and combines the smartphone with a home-made monochromator to collect plasma source, which provides the possibility of heavy metal detection in aqueous solution.The home-made high voltage circuit module of this research belongs to DC to DC boost module, and its circuit configuration is composed of oscillating circuit, transformer and voltage doubler circuit.The oscillating circuit converts the DC input into AC, then boosts voltage through transformer. Finally the AC voltage is doubled and rectified with a doubler voltage circuit, so the final output is high DC voltage. In addition, in the above three components of the circuit, the components of the oscillating circuit are mainly studied, and the influence of the series inductance or ballast resistance on the plasma voltage and current is investigated. A needle tip to aqueous microplasma system was used. The device consisted of a metal needle and a copper. The tip of the needle was defined as a high voltage end, and the solution to be tested in the filter paper on the copper was a low voltage end. The high energy density property of the plasma vaporized the solution to be tested. A optical fiber was used to collect the characteristic light emitted by the excitation of heavy metal element in the solution: the emission spectra were used for the analyze of the heavy metal in the solution. Furthermore, a smartphone were used as a portable heavy metal detector. A mobile power supply was used to provide 5 V DC power, and outputs high DC voltage via a high-voltage module was used to generate plasma. The plasma light source first passed through the slit and became parallel light which was and then diffracted by the grating and split into the photosensitive element inside the smartphone. The photography was taken by the smart phone and was analyzed determine the metal elements in the solution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:37:40Z (GMT). No. of bitstreams: 1 ntu-107-R05524085-1.pdf: 4673801 bytes, checksum: c29bc87c5d3c958d55f80dc46f79eed7 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III ABSTRACT V 目錄 VII 圖目錄 XI 表目錄 XVII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第2章 文獻回顧 3 2.1 電漿簡介 3 2.1.1 電漿介紹 3 2.1.2 電漿種類應用 5 2.1.3 微電漿介紹 7 2.1.4 微電漿種類應用 12 2.2 可攜式電漿的發展現況 14 2.2.1 高壓電源種類及其電漿領域使用狀況 14 2.2.2 可攜式高壓電源的簡介與原理 21 2.2.3 可攜式電漿系統在學術領域的發展 25 2.3 直流電電漿系統 30 2.3.1 直流電輝光放電43 30 2.3.2 直流電電漿放電特徵曲線44 32 2.4 針尖至平面微電漿系統檢測重金屬 34 2.4.1 針尖至平面電漿系統種類11, 45-64 34 2.4.2 其他利用微電漿檢測重金屬之方法66 41 2.5 其他檢測 46 2.5.1 檢測重金屬之方法72 46 2.5.2 市售可攜式重金屬檢測設備 50 2.5.3 光譜儀結合智慧型手機之檢測設備81-96 54 第3章 實驗設備與架構 57 3.1 微電漿裝置 57 3.1.1 微電漿系統 57 3.1.2 自製高壓直流電源供應模組 59 3.2 電路模擬軟體 61 3.3 電漿檢測設備 62 3.3.1 電性檢測 62 3.3.2 光學檢測 63 3.3.3 結合手機平台式之光譜儀 64 3.4 化學藥品與樣材 65 第4章 實驗結果與討論 67 4.1 電漿檢測 67 4.1.1 電漿電壓電流波形 67 4.1.2 金屬特徵光譜分析 69 4.1.3 隨時間變化之電漿強度與電壓電流分析 70 4.2 電漿裝置分析 73 4.2.1 不同針尖之影響 73 4.2.2 電路模組參數變化對光譜之影響 78 4.2.3 鎮流電阻與電感對光譜之影響 81 4.3 可攜式手機光譜儀之重金屬檢測 92 第5章 結論與未來展望 97 第6章 參考文獻 99 | |
dc.language.iso | zh-TW | |
dc.title | 高壓電路模組的開發及其在以微電漿光譜技術為核心之可攜式水中重金屬檢測裝置之應用 | zh_TW |
dc.title | Development of high voltage circuit module and its application in portable heavy metal detection device based on microplasma spectroscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建彰,陳奕君,江偉宏 | |
dc.subject.keyword | 微電漿,高壓電路模組,手機式光譜儀,重金屬偵測, | zh_TW |
dc.subject.keyword | micro plasma,high voltage module,cell-phone based spectrometer,heavy metal detection, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU201803728 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。