請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林乃君(Nai-Chun Lin) | |
| dc.contributor.author | Ya-Jung Lu | en |
| dc.contributor.author | 呂亞容 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:37:18Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Abdallah A. M., Gey van Pittius N. C, Champion P. A, Cox J., Luirink J., Vandenbroucke-Grauls C. M., Appelmelk B. J., Bitter W. (2007). Type VII secretion--mycobacteria show the way. Nat Rev Microbiol. Nov; 5(11), 883-91.
Aschtgen, M. S., Gavioli, M., Dessen, A., Lloubes, R., and Cascales, E. (2010). The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol. Microbiol. 75, 886-899. Alcoforado Diniz, J., Liu, Y. C., and Coulthurst, S. J. (2015). Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell. Microbiol. 17, 1742–1751 Alcoforado D. J., and Coulthurst, S. J. (2015). Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J. Bacteriol. 197, 2350-2360. Armshaw P, Pembroke, T, J. (2013). Control of expression of the ICE R391 encoded UV-inducible cell-sensitising function. BMC. Microbiology. 13, 195 Bartonickova, L., Sterzenbach, T., Nell, S., Kops, F., Schulze, J., Venzke, A., Brenneke, B., Bader, S., Gruber, A. D., Suerbaum, S., and Josenhans, C. (2013). Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell. Microbiol. 15, 992-1011. Basler, M., Ho, B. T., and Mekalanos, J. J. (2013). Tit-for-Tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell. 152, 884-894. Basler, M., and Mekalanos, J. J. (2012). Type VI secretion dynamics within and between bacterial cells. Science. 337, 815. Bernard, C. S., Brunet, Y. R., Gueguen, E., and Cascales, E. (2010). Nooks and crannies in Type VI secretion regulation. J. Bacteriol. 192, 3850-3860. Bell, B. L., Mohapatra, N. P., and Gunn, J. S. (2010). Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect. Immun. 78, 2189-2198. Bondage, D. D., Lin, J. S., Ma, L. S., Kuo, C. H., and Lai, E. M. (2016). VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc. Natl. Acad. Sci. U. S. A. 113, E3931-E3940. Bonemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H., and Mogk, A. (2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO. J. 28, 315-325. Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., Dodson, R. J., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M. J., Haft, D. H., Nelson, W. C., Davidsen, T., Zafar, N., Zhou, L. W., Liu, J., Yuan, Q. P., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S. E., Feldblyum, T. V., D'Ascenzo, M., Deng, W. L., Ramos, A. R., Alfano, J. R., Cartinhour, S., Chatterjee, A. K., Delaney, T. P., Lazarowitz, S. G., Martin, G. B., Schneider, D. J., Tang, X. Y., Bender, C. L., White, O., Fraser, C. M., and Collmer, A. (2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. U. S. A. 100, 10181-10186. Campbell, J. W., and Cronan, J. E. (2001). Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J. Bacteriol. 183, 5982-5990. Carruthers, M. D., Nicholson, P. A., Tracy, E. N., and Munson, R. S. (2013). Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. . Plos One 8. Cascales, E. (2008). The type VI secretion toolkit. EMBO. Rep. 9, 735-741. Castang, S., McManus, H. R., Turner, K. H., and Dove, S. L. (2008). H-NS family members function coordinately in an opportunistic pathogen. Proc. Natl. Acad. Sci. U. S. A. 105, 18947-18952. Cathelyn, J. S., Crosby, S. D., Lathem, W. W., Goldman, W. E., and Miller, V. L. (2006). RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc. Natl. Acad. Sci. U. S. A. 103, 13514-13519. Chen, L. H., Zou, Y. R., She, P. F., and Wu, Y. (2015). Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res. 172, 19-25 Chou, S., Bui, N. K., Russell, A. B., Lexa, K. W., Gardiner, T. E., LeRoux, M., Vollmer, W., and Mougous, J. D. (2012). Structure of a peptidoglycan amidase effector targeted to gram-negative bacteria by the type VI secretion system. Cell Reports. 1, 656-664. Chow, J., and Mazmanian, S. K. (2010). A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7, 265-276. Cianfanelli, F. R., Monlezun, L., and Coulthurst, S. J. (2016). Aim, Load, Fire: The type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51-62. Cui, S. L., Xiao, J. F., Wang, Q. Y., and Zhang, Y. X. (2016). H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida. Arch. Microbiol. 198, 653-661. Das, S., and Chaudhuri, K. (2003). Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3, 287-300. Deziel, E., Gopalan, S., Tampakaki, A. P., Lepine, F., Padfield, K. E., Saucier, M., Xiao, G. P., and Rahme, L. G. (2005). The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 55, 998-1014. Dong, T. G., Ho, B. T., Yoder-Himes, D. R., and Mekalanos, J. J. (2013). Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. U. S. A. 110, 2623-2628. Dudley, E. G., Thomson, N. R., Parkhill, J., Morin, N. P., and Nataro, J. P. (2006). Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol. Microbiol. 61, 1267-1282. Durand, E., Nguyen, V. S., Zoued, A., Logger, L., Pehau-Arnaudet, G., Aschtgen, M. S., Spinelli, S., Desmyter, A., Bardiaux, B., Dujeancourt, A., Roussel, A., Cambillau, C., Cascales, E., and Fronzes, R. (2015). Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523, 555-560. Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos, J. J. (2002). Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. U. S. A. 99, 1556-1561. English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R., and Coulthurst, S. J. (2014). Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex. Biochem. J. 461, 291-304. Felisberto-Rodrigues, C., Durand, E., Aschtgen, M. S., Blangy, S., Ortiz-Lombardia, M., Douzi, B., Cambillau, C., and Cascales, E. (2011). Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. . Plos Pathogens. 7. Feng, Y., and Cronan, J. E. (2009). A New Member of the Escherichia coli fad Regulon: Transcriptional regulation of fadM (ybaW). J. Bacteriol. 191, 6320-6328. Feng, Y., and Cronan, J. E. (2010). Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. J. Bacteriol. 192, 4289-4299 Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S., and Lory, S. (2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell. 7, 745-754. Goodman, A. L., Merighi, M., Hyodo, M., Ventre, I., Filloux, A., and Lory, S. (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 23, 249-259. Green, E. R., and Mecsas, J. (2016). Bacterial secretion systems–an overview. Microbiol. Spectrum 4. Haapalainen, M., Mosorin, H., Dorati, F., Wu, R. F., Roine, E., Taira, S., Nissinen, R., Mattinen, L., Jackson, R., Pirhonen, M., and Lin, N. C. (2012). Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts . J. Bacteriol. 194, 4810-4822. Hachani, A., Allsopp, L. P., Oduko, Y., and Filloux, A. (2014). The VgrG proteins are 'a la carte' delivery systems for bacterial type VI effectors. J. Biol. Chem. 289, 17872-17884. Haydon, D. J., and Guest, J. R. (1991). A new family of bacterial regulatory proteins. . FEMS Microbiol. Lett. 79, 291-296. Hayes C. S., Aoki S. K., and Low D. A. (2010). Bacterial contact-dependent delivery systems. Annu Rev Genet. 44, 71-90. Henry, M. F., and Cronan, J. E. (1991). Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J. Mol. Biol. 222, 843-849. Henry, M. F., and Cronan, J. E. (1992). A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 70, 671-679. Hood, R. D., Singh, P., Hsu, F. S., Guvener, T., Carl, M. A., Trinidad, R. R. S., Silverman, J. M., Ohlson, B. B., Hicks, K. G., Plemel, R. L., Li, M., Schwarz, S., Wang, W. Y., Merz, A. J., Goodlett, D. R., and Mougous, J. D. (2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7, 25-37. Hoskisson, P. A., and Rigali, S. (2009). Variation in form and function: the helix-turn-helix regulators of the GntR superfamily. Adv. Appl. Microbiol. 69, 1-22. Hsu, F., Schwarz, S., and Mougous, J. D. (2009). TagR promotes PpkA‐catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol. Microbiol. 72, 1111-1125. Hunt, T. A., Kooi, C., Sokol, P. A., and Valvano, M. A. (2004). Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect. Immun. 72, 4010-4022. Hughes, K. T., Simons, R. W., and Nunn, W. D. (1988). Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source. J. Bacteriol. 170, 1666-1671. Iram, S. H., and Cronan, J. E. (2005). Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J. Biol. Chem. 280, 32148-32156. Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L., and Wai, S. N. (2009). Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. Plos One 4. Jiang, F., Waterfield, N. R., Yang, J., Yang, G. W., and Jin, Q. (2014). A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. . Cell Host Microbe. 15, 600-610. Kang, Y., Nguyen, D. T., Son, M. S., and Hoang, T. T. (2008). The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiol-Sgm. 154, 1584-1598. Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 10, 845-58 Kitaoka, M., Miyata, S. T., Brooks, T. M., Unterweger, D., and Pukatzki, S. (2011). VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J. Bacteriol. 193, 6471-6482. Koskiniemi, S., Lamoureux, J. G., Nikolakakis, K. C., de Roodenbeke, C. T., Kaplan, M. D., Low, D. A., and Hayes, C. S. (2013). Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. U. S. A. 110, 7032-7037. Kostakioti, M., Newman, C. L., Thanassi, D. G. and Stathopoulos, C., (2005). Mechanisms of protein export across the bacterial outer membrane. J. Bacteriol. 187, 4306-4314.. Kudryashev, M., Wang, R. Y. R., Brackmann, M., Scherer, S., Maier, T., Baker, D., DiMaio, F., Stahlberg, H., Egelman, E. H., and Basler, M. (2015). Structure of the type VI secretion system contractile sheath. Cell. 160, 952-962. Leiman, P. G., Basler, M., Ramagopal, U. A., Bonanno, J. B., Sauder, J. M., Pukatzki, S., Burley, S. K., Almo, S. C., and Mekalanos, J. J. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. U. S. A. 106, 4154-4159. Lertpiriyapong, K., Gamazon, E. R., Feng, Y., Park, D. S., Pang, J., Botka, G., Graffam, M. E., Ge, Z. M., and Fox, J. G. (2012). Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. Plos One 7. e42842 Liang, X. Y., Moore, R., Wilton, M., Wong, M. J. Q., Lam, L., and Dong, T. G. (2015). Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl. Acad. Sci. U. S. A. 112, 9106-9111. Lin, J. S., Wu, H. H., Hsu, P. H., Ma, L. S., Pang, Y. Y., Tsai, M. D., and Lai, E. M. (2014). Fha interaction with phosphothreonine of TssL Apactivates type VI secretion in Agrobacterium tumefaciens. Plos Pathog 10, e1003991. Lucchini, S., Rowley, G., Goldberg, M. D., Hurd, D., Harrison, M., and Hinton, J. C. D. (2007). H-NS mediates the silencing of laterally acquired genes in bacteria. Plos Pathog 3, e38. Ma, A. T., and Mekalanos, J. J. (2010). In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc. Natl. Acad. Sci. U. S. A. 107, 4365-4370. Ma, L. S., Narberhaus, F., and Lai, E. M. (2012). IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J. Bio.l Chem. 287, 15610-15621. MacIntyre, D. L., Miyata, S. T., Kitaoka, M., and Pukatzki, S. (2010). The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl. Acad. Sci. U. S. A. 107, 19520-19524. Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B., and Pukatzki, S. (2011). Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 79, 2941-2949. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordonez, C. L., Lory, S., Walz, T., Joachimiak, A., and Mekalanos, J. J. (2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312, 1526-1530. Mougous, J. D., Gifford, C. A., Ramsdell, T. L., and Mekalanos, J. J. (2007). Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat. Cell Biol. 9, 797-U121. Murdoch, S. L., Trunk, K., English, G., Fritsch, M. J., Pourkarimi, E., and Coulthurst, S. J. (2011). The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. . J. Bacteriol. 193, 6057-6069. Natale, P., Bruser, T., and Driessen, A. J. M. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane - Distinct translocases and mechanisms. Bba-Biomembranes. 1778, 1735-1756. Navarre, W. W., McClelland, M., Libby, S. J., and Fang, F. C. (2007). Silencing of xenogeneic DNA by H-NS - facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Gene Dev. 21, 1456-1471. Osipiuk, J., Xu, X., Cui, H., Savchenko, A., Edwards, A., and Joachimiak, A. (2011). Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J. Struct. Funct. Genomics. 12, 21. Parsons, D. A., and Heffron, F. (2005). sciS, an icmF homolog in Salmonella enterica serovar typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73, 4338-4345. Planamente, S., Salih, O., Manoli, E., Albesa‐Jové, D., Freemont, P. S., and Filloux, A. (2016). TssA forms a gp6‐like ring attached to the type VI secretion sheath. EMBO. 35, 1613-1627. Pabo, C.O., and Sauer, R.T., (1992) Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D., and Mekalanos, J. J. (2007). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. U. S. A. 104, 15508-15513. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F., and Mekalanos, J. J. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. U. S. A. 103, 1528-1533. Rao, P. S. S., Yamada, Y., Tan, Y. P., and Leung, K. Y. (2004). Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53, 573-586. Renzi, F., Rescalli, E., Galli, E., and Bertoni, G. (2010). Identification of genes regulated by the MvaT‐like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ. Microbiol. 12, 254-263. Rigali, S., Derouaux, A., Giannotta, F., and Dusart, J. (2001). Subdivision of the helix-turn-helix GntR family of bacterial regulators in FadR, HutC, MocR, and YtrA sub-families. J. Biol. Chem. 15, 12507-12515 Russe, A. B., Singh, P., Brittnacher, M., Bui, N. K., Hood, R. D., Carl, M. A., Agnello, D. M., Schwarz, S., Goodlett, D. R., Vollmer, W., and Mougous, J. D. (2012). A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11, 538-549. Russell, A. B., Hood, R. D., Bui, N. K., LeRoux, M., Vollmer, W., and Mougous, J. D. (2011). Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475, 343-U92. Russell, A. B., LeRoux, M., Hathazi, K., Agnello, D. M., Ishikawa, T., Wiggins, P. A., Wai, S. N., and Mougous, J. D. (2013). Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496, 508. Russell, A. B., Peterson, S. B., and Mougous, J. D. (2014a). Type VI secretion effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148. Saïda F, Uzan M, Odaert B, Bontems F. (2016). Expression of highly toxic genes in E. coli: Special strategies and genetic tools. Curr Protein Pept Sci. 7, 47-56. Salomon, D., Gonzalez, H., Updegraff, B. L., and Orth, K. (2013). Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. . Plos One. 8, e61086 Salomon, D., Klimko, J. A., and Orth, K. (2014). H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiol-Sgm. 160, 1867-1873. Sana, T. G., Soscia, C., Tonglet, C. M., Garvis, S., and Bleves, S. (2013). Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. Plos One 8, e76030 Santic, M., Molmeret, M., Barker, J. R., Klose, K. E., Dekanic, A., Doric, M., and Abu Kwaik, Y. (2007). A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9, 2391-2403. Sarris, P. F., Skandalis, N., Kokkinidis, M., and Panopoulos, N. J. (2010). In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol. Plant. Pathol. 11, 795-804. Schell, M. A., Ulrich, R. L., Ribot, W. J., Brueggemann, E. E., Hines, H. B., Chen, D., Lipscomb, L., Kim, H. S., Mrázek, J., and Nierman, W. C. (2007). Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64, 1466-1485. Schroder, O., and Wagner, R. (2000). The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 298, 737-748. Schwarz, S., Hood, R. D., and Mougous, J. D. (2010a). What is type VI secretion doing in all those bugs? Trends Microbiol. 18, 531-537. Schwarz, S., West, T. E., Boyer, F., Chiang, W. C., Carl, M. A., Hood, R. D., Rohmer, L., Tolker-Nielsen, T., Skerrett, S. J., and Mougous, J. D. (2010b). Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. Plos Pathog. 6, e1001068. Shalom, G., Shaw, J. G., and Thomas, M. S. (2007). In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiol-Sgm. 153, 2689-2699. Shneider, M. M., Buth, S. A., Ho, B. T., Basler, M., Mekalanos, J. J., and Leiman, P. G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500, 350-353. Shrivastava, S., and Mande, S. S. (2008). Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. Plos One. 3, e2955. Stathopoulos, C., Hendrixson, D. R., Thanassi, D. G., Hultgren, S. J., St Geme, J. W., III and Curtiss, R., III (2000). Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. 2, 1061–1072. Silverman, J. M., Agnello, D. M., Zheng, H. J., Andrews, B. T., Li, M., Catalano, C. E., Gonen, T., and Mougous, J. D. (2013). Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell. 51, 584-593. Silverman, J. M., Austin, L. S., Hsu, F., Hicks, K. G., Hood, R. D., and Mougous, J. D. (2011). Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol. 82, 1277-1290. Simons, R. W., Egan, P. A., Chute, H. T., and Nunn, W. D. (1980). .Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J. Bacteriol. 142, 621-632. Suarez, G., Sierra, J. C., Sha, J., Wang, S., Erova, T. E., Fadl, A. A., Foltz, S. M., Horneman, A. J., and Chopra, A. K. (2008). Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb. Pathogenesis. 44, 344-361. Suvorova, I. A., Korostelev, Y. D., and Gelfand, M. S. (2015). GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One. 10, e0132618. Tomoya ., Takeshi A., Miki H., Yuki T., Yoshiko O., Miki B., Kirill A. D., Masaru T., Barry L. W., and Hirotada M. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008. Tseng, T.-T., Tyler, B. M. and Setubal, J. C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC. Microbiol. 9, S2. Vindal, V., Suma, K., and Ranjan, A. (2007). GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC. Genomics. 8. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016). Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.. Nucleic Acids Res. doi, 10.1093 Whalen, M. C., Innes, R. W., Bent, A. F., and Staskawicz, B. J. (1991). Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 3, 49-59. Whitney, J. C., Chou, S., Russell, A. B., Biboy, J., Gardiner, T. E., Ferrin, M. A., Brittnacher, M., Vollmer, W., and Mougous, J. D. (2013). Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J. Biol. Chem. 288, 26616-26624. Williams, S. G., Varcoe, L. T., Attridge, S. R., and Manning, P. A. (1996). Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun. 64, 283-289. Wu, C. F., Lin, J. S., Shaw, G. C., and Lai, E. M. (2012). Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. Plos Pathog. 8, e1002938. Wu, H. Y., Chung, P. C., Shih, H. W., Wen, S. R., and Lai, E. M. (2008). Secretome analysis uncovers an hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J. Bacteriol. 190, 2841-2850. Xin, X. F., and He, S. Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51, 473-498. Young, J. M., Takikawa, Y., Gardan, L., and Stead, D. E. (1992). Changing concepts in the taxonomy of plant pathogenic bacteria. . Annu Rev Phytopathol. 30, 67-105. Zheng, J., and Leung, K. Y. (2007). Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66, 1192-1206. Zheng, J., Shin, O. S., Cameron, D. E., and Mekalanos, J. J. (2010). Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. U. S. A. 107, 21128-21133. Zinnaka, Y., and Carpenter J. C. C., (1972). An enterotoxin produced by noncholera vibrios. Johns Hopkins Med. J. 131, 403 Zoued, A., Durand, E., Bebeacua, C., Brunet, Y. R., Douzi, B., Cambillau, C., Cascales, E., and Journet, L. (2013). TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031-27041. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72355 | - |
| dc.description.abstract | 細菌會使用各種方式與周圍的環境進行交互作用,分泌系統便是其中一種重要的機制。透過分泌系統分泌出效應蛋白 (effector),細菌得以自環境中獲得養分、克服非生物逆境及與真核或原核細胞作用,以利自身生存。迄今為止已發現九種分泌系統,其中,在 2006 年於 Vibrio cholera 及 Pseudomonas aeruginosa 中被定義出的第六型分泌系統 (Type VI secretion system, T6SS) 被認為在病原菌的致病力和細菌間競爭能力上扮演重要的角色。第六型分泌系統主要是由十三個核心成分所組成,而其中 Hcp 和 VgrG 負責組成胞外類似噬菌體尾絲的外管。番茄細菌性斑點病菌 Pseudomonas syringae pv. tomato (Pst) DC3000,是研究分子植物病理學的重要模式生物,先前的研究發現,其具有兩套 T6SS 基因叢集,分別為 HSI-I 和 HSI-II,但僅偵測過後者的表現情形。以液相層析串聯式質譜儀 (LC/MS/MS) 分析 Pst DC3000 野生株、ΔtssM2 和 ΔclpV2 突變株之分泌蛋白質體 (secretome),找到了可能是經由 T6SS 分泌的效應蛋白。初篩後得到 PSPTO_3283 突變株對大腸桿菌及同種菌株 P. savastanoi pv. phaseolicola (Psph) 1448a的競爭能力較野生株低,且在 E. coli BL21 (DE3) 中異位表達 PSPTO_3283 也會降低大腸桿菌的生長。Phyre2 預測 PSPTO_3283 屬於 GntR 家族轉錄因子中的 FadR 同源蛋白,由於大腸桿菌的 FadR 與脂肪酸代謝調控有關,可讓大腸桿菌利用長鏈脂肪酸。然而在含有油酸的培養基上,表現 PSPTO_3283 的菌株代謝油酸的能力下降外,生長也有受到抑制的情形。綜合以上所述,Pst DC3000 中可能存在一種新的 T6SS 效應蛋白,能夠藉由調控競爭者脂肪酸代謝與合成之平衡,來影響其生長。 | zh_TW |
| dc.description.abstract | Bacterial cells use various strategies to communicate with their surrounding environments, one of which is secretion system. Using secretion systems, bacterial cells can secret effectors to obtain nutrient, overcome abiotic stress and interact with either eukaryotic or prokaryotic cells. Nine types of secretion systems have been found thus far, and type VI secretion system (T6SS) was first identified in Vibrio cholerae and in Pseudomonas aeruginosa in 2006. T6SS utilizes a one-step mechanism analogous bacteriophages to translocate effectors into eukaryotic and prokaryotic cells, and is involved in pathogenesis and interbacterial competition ability. It is composed of 13 core components, two of which, Hcp and VgrG, are assumed to be extracellular components of the secretion machinery related to bacteriophage tail structure. Pseudomonas syringae pv. tomato (Pst) DC3000 causes bacterial speck disease on tomato, and represents an important model organism for studying molecular plant pathology. Two T6SS gene clusters, HSI-I and HSI-II were found in the genome of Pst DC3000, but only the expression of HSI-II can be detected. In a previous study, T6SS-dependent secretome was analyzed using Pst DC3000 wild type and two T6SS mutants, ΔtssM2 and ΔclpV2 and LC-MS-MS. Among those putative T6SS effectors, PSPTO_3283,which is a transcription factor of GntR family, is of interest. This effector is involved in interbacterial competition with E. coli and P. savastanoi . pv. phaseolicola 1448a. Furthermore, ectopic expression of PSPTO_3283 in E. coli reduced growth of E. coli. Analyzed by Phyre2, PSPTO_3283 was predicted to be homologous to FadR, which is involved in regulation of fatty acid metabolism, allowing E. coli to utilize long-chain fatty acid. However, expression of PSPTO_3283 reduced E. coli ability to utilize oleate, a long-chain fatty acid, as well as bacterial growth. Taking together, these data suggest a novel type of T6SS effector present in Pst DC3000, which can inhibit competitor growth via interfere homeostasis of fatty acid metabolism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:37:18Z (GMT). No. of bitstreams: 1 ntu-107-R05623025-1.pdf: 3386380 bytes, checksum: 6084b935e3d59aee25910cac1ef77da2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
Abstractii 目錄 iv 表目錄 vii 圖目錄 viii 附表目錄 x 附圖目錄 xi 壹、前人研究1 一、蛋白質分泌系統 ( Protein secretion system )1 二、第六型分泌系統的發現 ( The discovery of the type VI secretion system )2 三、第六型分泌系統的組成 ( The components of the Type VI secretion system )3 四、第六型分泌系統的調節 (Regulation of the Type VI secretion system)5 五、第六型分泌系統的功能( Functions of Type VI secretiom system )7 六、第六型分泌系統的效應蛋白 (Type VI secreted effector proteins )8 1. Hcp 9 2. VgrG 9 3. 透過第六型分泌系統分泌的效應蛋白 (Type VI secreted effector proteins)9 七、番茄細菌性斑點病菌 ( Pseudomonas syringae pv. tomato DC3000 )12 八、GntR Family13 九、FadR (Fatty Acid Degradation R) Family14 貳、研究動機與目的15 參、材料方法17 一、細菌培養與生長條件17 二、染色體 DNA 萃取17 三、大腸桿菌勝任細胞之電穿孔製備17 四、大腸桿菌轉型作用18 五、自洋菜凝膠 (agarose gel) 中純化 DNA18 六、質體 DNA 之小量萃取18 八、突變株之製備20 九、PSPTO_3283 質體互補菌株之建立20 十、細菌競爭試驗21 1、製備帶有 GFP 基因的 E. coli 轉植株21 2、以綠色螢光蛋白訊號測試 Pst DC3000 之競爭能力21 3、競爭菌數計算試驗21 十一、胞內與分泌蛋白質之製備22 十二、SDS聚丙烯酰胺凝膠電泳與西方墨點法22 十三、PSPTO_3283 對 Escherichia coli BL21 (DE3) 之生長測試 23 十四、PSPTO_3283 對 Escherichia coli BW25113 之生長測試 23 十五、PSPTO_3283 蛋白質純化24 十六、PSPTO_3283 對 E. coli BW25113 利用脂肪酸能力之影響 24 十七、RNA 萃取25 十八、反轉錄聚合酶連鎖反應 (Reverse transcription-polymerase chain reaction)25 肆、結果 27 一、T6SS 效應蛋白候選基因對 Pst DC3000 細菌間競爭能力之影響 27 二、突變 PSPTO_0328、PSPTO_2626 及 PSPTO_3283 會影響 Pst DC3000細菌間競爭能力27 三、∆PSPTO_0328 在細菌間競爭上的缺失可被 C 端帶有 HA 標記的 PSPTO_3283 蛋白回補28 四、PSPTO_3283 透過 contact-dependent 的方式抑制 E. coli MG1655 生長29 五、表現 PSPTO_3283 會抑制Escherichia coli BL21 (DE3) 的生長29 六、表現 PSPTO_3283 會抑制Escherichia coli BW25113 的生長 30 七、PSPTO_3283 被預測屬於轉錄因子 GntR family 中的 FadR subfamily30 八、PSPTO_3283 影響 E. coli 長鏈脂肪酸代謝31 伍、討論 33 陸、參考文獻40 柒、表61 捌、圖74 玖、附錄 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | FadR 轉錄因子 | zh_TW |
| dc.subject | GntR 家族 | zh_TW |
| dc.subject | 第六型分泌系統效應蛋白 | zh_TW |
| dc.subject | 番茄細菌性斑點病菌 | zh_TW |
| dc.subject | 第六型分泌系統 | zh_TW |
| dc.subject | Type VI secretion system | en |
| dc.subject | Pseudomonas syringae pv. tomato DC3000 | en |
| dc.subject | Type VI effector | en |
| dc.subject | GntR family | en |
| dc.subject | FadR transcription factor | en |
| dc.title | 番茄細菌性斑點病菌 PSPTO_3283 之特性分析 | zh_TW |
| dc.title | Characterization of PSPTO_3283 in Pseudomonas syringae pv. tomato DC3000 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴爾?(Erh-Min Lai),吳慧芬(Hui-Fen Wu),鄧文玲(Wen-Ling Deng) | |
| dc.subject.keyword | 第六型分泌系統,番茄細菌性斑點病菌,第六型分泌系統效應蛋白,GntR 家族,FadR 轉錄因子, | zh_TW |
| dc.subject.keyword | Type VI secretion system,Pseudomonas syringae pv. tomato DC3000,Type VI effector,GntR family,FadR transcription factor, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201803711 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
