Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張孟基(Men-Chi Chang)
dc.contributor.authorTzu-Cheng Chienen
dc.contributor.author簡梓丞zh_TW
dc.date.accessioned2021-06-17T06:36:45Z-
dc.date.available2021-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation陳依甄 (2012). 水稻轉錄因子 OsbHLH061 和 OsbHLH068 在非生物逆境下基因表現及功能性分析. 臺灣大學農藝學研究所學位論文: 1-129.
Abdul, W. (2013). Potassium–sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science 176 (3): 344-354.
Ahmad, I., Devonshire, J., Mohamed, R., Schultze, M. & Maathuis, F. J. (2016). Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytologist 209 (3): 1040-1048.
Almeida, P., Katschnig, D. & de Boer, A. H. (2013). HKT transporters—state of the art. International Journal of Molecular Sciences 14 (10): 20359-20385.
Ashraf, M. & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora - Morphology, Distribution, Functional Ecology of Plants 198 (6): 486-498.
Chance, B. and Maehly, A.C. (1955). Assay of catalases and Peroxidases. Methods in Enzymology, 2: 764-775.
Chaves, M. M., Flexas, J. & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103 (4): 551-560.
Chen, H., Chen, W., Zhou, J., He, H., Chen, L., Chen, H. & Deng, X. W. (2012). Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science 193: 8-17
Daudi, A. & O’Brien, J. A. (2012). Detection of Hydrogen Peroxide by DAB Staining in Arabidopsis Leaves. Bio-Protocol 2 (18): e263.
Ellouzi, H., Hamed, K. B., Cela, J., Munné‐Bosch, S. & Abdelly, C. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum 142 (2): 128-143.
Esterbauer, H. & Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-421: Elsevier.
Fedoroff, N., Battisti, D., Beachy, R. N., Cooper, P., Fischhoff, D., Hodges, C., Knauf, V., Lobell, D., Mazur, B. & Molden, D. (2010). Radically rethinking agriculture for the 21st century. Science 327 (5967): 833-834.
Gapper, C. & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology 141(2): 341-345.
Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909-930.
Gupta, M., Qiu, X., Wang, L., Xie, W., Zhang, C., Xiong, L., Lian, X. & Zhang, Q. (2008). KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics 280 (5): 437.
Han, M., Kim, C. Y., Lee, J., Lee, S. K. & Jeon, J. S. (2014). OsWRKY42 Represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Molecules and Cells 37 (7): 532-539.
Hong, Y., Zhang, H., Huang, L., Li, D. & Song, F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science 7 (4).
Horie, T., Hauser, F. & Schroeder, J. I. (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14 (12): 660-668.
International Rice Genome Sequencing, P. (2005). The map-based sequence of the rice genome. Nature 436: 793.
Jia, D., Gong, X., Li, M., Li, C., Sun, T. & Ma, F. (2018). Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes 9 (5).
Jung, H., Chung, P. J., Park, S. H., Redillas, M., Kim, Y. S., Suh, J. W. & Kim, J. K. (2017). Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal 15 (10): 1295-1308.
Kagaya, Y., Ohmiya, K. & Hattori, T. (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Research 27 (2): 470-478.
Kaleem, F., Shabir, G., Aslam, K., Rasul, S., Manzoor, H., Shah, S. M. & Khan, A. R. (2018). An overview of the genetics of plant response to salt stress: present status and the way forward. Applied Biochemistry and Biotechnology 1-29.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17 (3): 287.
Kaur, N. & Pati, P. K. (2017). Integrating classical with emerging concepts for better understanding of salinity stress tolerance mechanisms in rice. Frontiers in Environmental Science 5 (42).
Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H. & Ooka, H. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301 (5631): 376-379.
Kim, S. W., Jeong, H. J. & Jung, K.-H. (2015). Integrating omics analysis of salt stress-responsive genes in rice. Genes & Genomics 37(8): 645-655.
Kong, X.-Q., Gao, X.-H., Sun, W., An, J., Zhao, Y.-X. & Zhang, H. (2011). Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1. Plant Molecular Biology 75 (6): 567-578.
Kumar, K., Kumar, M., Kim, S.-R., Ryu, H. & Cho, Y.-G. (2013). Insights into genomics of salt stress response in rice. Rice 6 (1): 27.
Leblebici, Z., Aksoy, A. & Duman, F. (2010). Influence of nutrient addition on growth and accumulation of cadmium and copper in Lemna gibba. Chemical Speciation & Bioavailability 22 (3): 157-164.
Lee, D. K., Jung, H., Jang, G., Jeong, J. S., Kim, Y. S., Ha, S. H., Do Choi, Y. & Kim, J. K. (2016). Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiology 172 (1): 575-588.
Lee, S. b., Lee, S. j. & Kim, S. Y. (2015). AtERF15 is a positive regulator of ABA response. Plant Cell Reports 34 (1): 71-81.
Li, J., Guo, X., Zhang, M., Wang, X., Zhao, Y., Yin, Z., Zhang, Z., Wang, Y., Xiong, H. & Zhang, H. (2018). OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Science 270: 131-139.
Li, X., Yang, D., Sun, L., Li, Q., Mao, B. & He, Z. (2016). The systemic acquired resistance regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling and promoting IAA-amido synthase expression. Plant Physiology 172 (1): 546-558.
Licausi, F., Ohme-Takagi, M. & Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199 (3): 639-649.
Lin, T., Yang, W., Lu, W., Wang, Y. & Qi, X. (2017). Transcription Factors PvERF15 and PvMTF-1 form a cadmium stress transcriptional pathway. Plant Physiology 173 (3): 1565-1573.
Lindemose, S., O'Shea, C., Jensen, M. K. & Skriver, K. (2013). Structure, function and networks of transcription factors involved in abiotic stress responses. International Journal of Molecular Sciences 14 (3): 5842-5878.
Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., Chu, C. & Wang, X. (2014). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology 84 (1): 19-36.
Liu, D., Chen, X., Liu, J., Ye, J. & Guo, Z. (2012). The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany 63 (10): 3899-3911.
Mao, C., Lu, S., Lv, B., Zhang, B., Shen, J., He, J., Luo, L., Xi, D., Chen, X. & Ming, F. (2017). A Rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology 174 (3): 1747-1763.
Nakano, T., Suzuki, K., Fujimura, T. & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140 (2): 411-432.
Nowak, K., Wojcikowska, B. & Gaj, M. D. (2015). ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241 (4): 967-985.
Oda, Y., Kobayashi, N. I., Tanoi, K., Ma, J. F., Itou, Y., Katsuhara, M., Itou, T. & Horie, T. (2018). T-DNA tagging-based gain-of-function of OsHKT1;4 reinforces Na Exclusion from leaves and stems but triggers Na toxicity in roots of rice under salt stress. International Journal of Molecular Sciences 19 (1).
Qi, W., Sun, F., Wang, Q., Chen, M., Huang, Y., Feng, Y. Q., Luo, X. & Yang, J. (2011). Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiology 157 (1): 216-228.
Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z. & Huang, R. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal 8 (4): 476-488.
Rahoui, S., Chaoui, A. & El Ferjani, E. (2010). Membrane damage and solute leakage from germinating pea seed under cadmium stress. Journal of Hazardous Materials 178 (1): 1128-1131.
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany 57 (5): 1017-1023.
Rodríguez-Rosales, M. P., Gálvez, F. J., Huertas, R., Aranda, M. N., Baghour, M., Cagnac, O. & Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signaling & Behavior 4 (4): 265-276.
Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z. & Zhang, Z. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal 12 (4): 468-479.
Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto, M. & Abe, T. (2013). Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology 54 (2): e6-e6.
Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290 (3): 998-1009.
Sakuraba, Y., Piao, W., Lim, J. H., Han, S. H., Kim, Y. S., An, G. & Paek, N. C. (2015). Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant and Cell Physiology 56 (12): 2325-2339.
Schmidt, R., Mieulet, D., Hubberten, H. M., Obata, T., Hoefgen, R., Fernie, A. R., Fisahn, J., San Segundo, B., Guiderdoni, E., Schippers, J. H. & Mueller-Roeber, B. (2013). Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice.The Plant Cell 25 (6): 2115-2131.
Schmidt, R., Schippers, J. H., Mieulet, D., Watanabe, M., Hoefgen, R., Guiderdoni, E. & Mueller-Roeber, B. (2014). SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. Molecular Plant 7 (2): 404-421.
Shrivastava, P. & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22 (2): 123-131.
Tang, N., Zhang, H., Li, X., Xiao, J. & Xiong, L. (2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology 158 (4): 1755-1768.
Tao, Z., Kou, Y., Liu, H., Li, X., Xiao, J. & Wang, S. (2011). OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. Journal of Experimental Botany 62 (14): 4863-4874.
Thitisaksakul, M., Tananuwong, K., Shoemaker, C. F., Chun, A., Tanadul, O.-u.-m., Labavitch, J. M. & Beckles, D. M. (2015). Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. Journal of Agricultural and Food Chemistry 63 (8): 2296-2304.
Thoday-Kennedy, E. L., Jacobs, A. K. & Roy, S. J. (2015). The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress. Plant Growth Regulation 76 (1): 3-12.
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2006). Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology 17 (2): 113-122.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y. G. & Zhao, K. (2016). Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS One 11 (4): e0154027.
Wu, S. J., Ding, L. & Zhu, J. K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. The Plant Cell 8 (4): 617-627.
Xiao, G., Qin, H., Zhou, J., Quan, R., Lu, X., Huang, R. & Zhang, H. (2016). OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Plant Molecular Biology 90 (3): 293-302.
Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M. & Sazuka, T. (2007). Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology 143 (3): 1362-1371.
Yang, R., Liu, J., Lin, Z., Sun, W., Wu, Z., Hu, H. & Zhang, Y. (2018). ERF transcription factors involved in salt response in tomato. Plant Growth Regulation 84 (3): 1-10.
Yıldırım, K. & Kaya, Z. (2017). Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiology and Biochemistry 115: 183-199.
Yoshida, K., Sakamoto, S., Kawai, T., Kobayashi, Y., Sato, K., Ichinose, Y., Yaoi, K., Akiyoshi-Endo, M., Sato, H. & Takamizo, T. (2013). Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Frontiers in Plant Science 4: 383.
Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J. & Huang, R. (2017). The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254 (1): 401-408.
Zeng, H., Xu, L., Singh, A., Wang, H., Du, L. & Poovaiah, B. W. (2015). Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Frontiers in Plant Science 6: 600.
Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J. & Ma, Y. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60 (13): 3781-3796.
Zhang, H., Agardh, E. & Agardh, C. D. (1993). Nitro blue tetrazolium staining: a morphological demonstration of superoxide in the rat retina. Graefe's Archive for Clinical and Experimental Ophthalmology 231 (3): 178-183.
Zhang, H., Zhang, J., Quan, R., Pan, X., Wan, L. & Huang, R. (2013). EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237 (6): 1443-1451.
Zhang, Z., Li, F., Li, D., Zhang, H. & Huang, R. (2010). Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232 (3): 765-774.
Zheng, X., Chen, B., Lu, G. & Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications 379 (4): 985-989.
Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell 167(2): 313-324.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72346-
dc.description.abstract水稻轉錄因子Ethylene Responsive Factors (OsERFs) 為一多基因家族,參與植物生長、發育和逆境反應。根據已發表DNA微陣列 (Microarray) 和即時定量PCR資料顯示OsERF106受鹽逆境誘導,然而OsERF106於鹽逆境中功能尚未明瞭。本篇研究利用反向遺傳學 (Reverse genetics) 方法,探討OsERF106於鹽逆境中所扮演之角色。我們使用Rapid Amplification of cDNA Ends (RACE) 選殖OsERF106,結果顯示編碼序列 (Coding sequence) 共有648個核苷酸。OsERF106過量表現株在正常環境下較為矮小,且鹽逆境耐受性較低,進一步分析顯示過量表現OsERF106會降低水稻過氧化氫酶活性,並累積較多活性氧族 (Reactive oxygen species, ROS)。此外過量表現OsERF106會增加OsSOS1及降低OsHKT1;4離子通道蛋白表現量,導致鹽逆境中地上部累積較多鈉離子和鉀離子。轉錄體分析結果顯示鹽逆境下過量表現OsERF106會降低離子通道蛋白OsHKT1;4和逆境相關轉錄因子OsbZIP16、OsWRKY42、OsWRKY45表現,並提高鉀離子轉運蛋白OsTPKb、OsHAK12及氯離子轉運蛋白OsCCC1表現。綜上所述,OsERF106可能參與水稻生長和鹽逆境耐受性,並扮演負向調控之角色。zh_TW
dc.description.abstractRice Ethylene Responsive Factors (OsERFs) belong to a large gene family can impact plant growth, development and stress responses. Analysis of public microarray data and qPCR analysis indicated that the expression of OsERF106 was up-regulated under salinity stress. However, the function of OsERF106 under salt stress is still unknown and remain to be elucidated. In this study, we used reverse genetic approach to characterize the function of OsERF106 in the salt stress. First, we clone the full open reading frame of OsERF106 gene by Rapid Amplification of cDNA Ends (RACE). The result shows the coding sequence length of OsERF106 is 648 base pair. The OsERF106-overexpressing transgenic rice displayed retarded growth with a high level of reactive oxygen species and significantly decreased antioxidant enzyme activity, especially under salt stress. Moreover, the OsERF106-overexpressing line increased the expression level of ion transporter OsSOS1 and decreased OsHKT1; 4 gene expression, resulted in higher Na+ and K+ accumulation in rice shoots. The transcriptome analysis showed that OsERF106 down-regulated the gene expression levels of OsHKT1; 4 and stress-related transcription factors OsbZIP16, OsWRKY42, OsWRKY45, while the gene expression of potassium transporters OsTPKb, OsHAK12 and chloride transporter OsCCC1 were up-regulated. Taken together, OsERF106 plays a negative role in regulating plant growth and salt stress tolerance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:36:45Z (GMT). No. of bitstreams: 1
ntu-107-R05621101-1.pdf: 2993981 bytes, checksum: 4b04e2014073b52cce64fb3cf4840156 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iii
縮寫字對照表 viii
第一章 前人研究 1
一、非生物逆境對植物影響和反應 1
二、植物對於鹽害逆境反應和耐鹽機制 1
三、水稻離子通道蛋白種類及功能 3
四、轉錄因子調控植物逆境反應 4
五、植物AP2/ERF家族介紹 4
六、OsERFs影響水稻生長發育和逆境耐受性 5
七、ERF家族啟動子結合位置 6
八、研究目的和動機 7
第二章 材料方法 8
一、OsERF106基因選殖和過量表現轉殖株及突變株之建立 8
二、水稻生長環境及種子發芽率調查 8
三、OsERF106表現部位和蛋白位置 8
四、RNA抽取和cDNA合成 9
五、逆轉錄PCR和即時聚合酶鏈式反應 9
六、鈉離子和鉀離子含量測定 10
七、丙二醛含量測定 10
八、離子滲漏度測定 10
九、過氧化氫 (H2O2) 和超氧化物 (O2-) 原位性染色 10
十、Catalase (CAT) 和Superoxide dismutase (SOD) 酵素活性測定 11
十一、Microarray及資料分析 11
第三章 結果 13
一、OsERF106選殖和基因資料庫比對 13
二、鹽逆境誘導OsERF106基因表現 13
三、OsERF106表現時期和蛋白位置 14
四、OsERF106於水稻幼苗生長和鹽逆境耐受性扮演負向調控因子 14
五、水稻種子發芽率受OsERF106影響 15
六、OsERF106增加水稻鹽逆境下ROS累積和降低抗氧化酵素活性 16
七、正常環境和鹽逆境下OsERF106影響水稻內離子通道蛋白基因表現 17
八、OsERF106增加水稻鹽逆境下地上部及地下部鈉離子和鉀離子含量 17
九、OsERF106過量表現株和TNG67轉錄體比較分析 18
十、GO enrichment和pathway分析 18
第四章 討論 20
一、水稻資料庫中OsERF106註解 20
二、OsERF106抑制水稻株高生長 20
三、種子發芽速率受OsERF106影響 21
四、OsERF106降低水稻鹽逆境耐受性 22
五、水稻鈉鉀離子平衡受OsERF106影響 23
六、OsERF106過量表現株轉錄體分析 24
七、GO enrichment路徑基因分析 24
第五章 結論 26
參考文獻 27
dc.language.isozh-TW
dc.subject轉錄因子zh_TW
dc.subjectOsERF106zh_TW
dc.subjectRACEzh_TW
dc.subject鹽逆境zh_TW
dc.subject活化氧族zh_TW
dc.subject離子通道蛋白基因zh_TW
dc.subject轉錄體分析zh_TW
dc.subjectTranscriptome analysis.en
dc.subjectTranscription factoren
dc.subjectOsERF106en
dc.subjectRACEen
dc.subjectSalt stressen
dc.subjectReactive oxygen speciesen
dc.subjectIon transporter geneen
dc.title水稻轉錄因子OsERF106負向調控水稻鹽逆境耐受性zh_TW
dc.titleRice Transcription Factor OsERF106 Plays a Negative Role in Salt Stress Toleranceen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文理,洪傳揚,侯新龍,蔡育彰
dc.subject.keyword轉錄因子,OsERF106,RACE,鹽逆境,活化氧族,離子通道蛋白基因,轉錄體分析,zh_TW
dc.subject.keywordTranscription factor,OsERF106,RACE,Salt stress,Reactive oxygen species,Ion transporter gene,Transcriptome analysis.,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201803621
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved