Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝博全
dc.contributor.authorChih-Fang Yangen
dc.contributor.author楊智方zh_TW
dc.date.accessioned2021-06-17T06:36:05Z-
dc.date.available2021-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation陳力騏。2008。 Electrochemistry for biomedical researchers. 國立臺灣大學出版中心。
陳韋諳。2011。油脂、食材及濾油粉對油炸油品質影響與其標準及快速檢測法之相關性。輔仁大學食品科學研究所碩士論文。
姚丞恩。2012。市面餐飮業油炸油之總極性化合物含量及其危害風險之研究。輔仁大學食品科學研究所碩士論文。
龔毅。2014。油品品質電化學阻抗感測器─生質柴油與酒精汽油的應用。國立臺灣大學生物產業機電工程學研究所博士論文。
Alimentarius, C. 1999. Codex standard for named vegetable oils. Codex Stan, 210, 1-13.
Akon, C. C., and D. B. Min. 2002. Food lipids: chemistry, nutrition and biotechnology. Food science and technology.
Bansal, G., W. Zhou, P. J. Barlow, P. Joshi, F. L. Neo, and H. L. Lo. 2010. Evaluation of commercially available rapid test kits for the determination of oil quality in deep-frying operations. Food chemistry, 121(2), 621-626.
Bard, A. J., and L. R. Faulkner. 2001 Electrochemical methods: fundamentals and applications. 2nd ed. New York:Wiley.
Barsoukov, E., and J. R. (Eds.).Macdonald. 2005. Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons.
Brühl, L., and B Matthäus. 2008. Short‐chain fatty acids as marker for the degradation of frying fats and oils. Lipid Technology, 20(3), 60-63.
Caldwell, J. D., B. S. Cooke, and M. K Greer. 2011. High performance liquid chromatography–size exclusion chromatography for rapid analysis of total polar compounds in used frying oils. Journal of the American Oil Chemists' Society, 88(11), 1669-1674.
Chang, S. S., R. J. Peterson., and C. T. Ho. 1978. Chemical reactions involved in the deep-fat frying of foods1. Journal of the American Oil Chemists’ Society,55(10), 718-727.
Chen, W. A., C. P. Chiu, W. C. Cheng, C. K. Hsu, and M. I. Kuo. 2013. Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. J Food Drug Anal, 21(1), 58-65.
Choe, E., and D. B. Min. 2007. Chemistry of deep‐fat frying oils. Journal of food science, 72(5).
Damodaran, S., K. L. Parkin, and O. R. Fennema. (Eds.). 2007. Fennema's Food Chemistry. CRC Press.
De Souza, J. P., O. R. Mattos, L. Sathler, and H. Takenouti. 1987. Impedance measurements of corroding mild steel in an automotive fuel ethanol with and without inhibitor in a two and three electrode cell. Corrosion Science, 27(12), 1351-1364.
Durante, G., W. Becari, F. A. Lima, and H. E. Peres. 2016. Electrical impedance sensor for real-time detection of bovine milk adulteration. IEEE Sensors Journal, 16(4), 861-865.
Eder, K. 1999. The effects of a dietary oxidized oil on lipid metabolism in rats. Lipids, 34(7), 717-725.
El-Shami, S. M., I. Z. Selim, I. M. El-Anwar, and M. H. El-Mallah. 1992. Dielectric properties for monitoring the quality of heated oils. Journal of the American Oil Chemists Society, 69(9), 872-875.
Ferreira, J., F. Seoane, and K. Lindecrantz. 2011. AD5933-based electrical bioimpedance spectrometer. Towards textile-enabled applications. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 3282-3285). IEEE
Foo, S. Y., S. Cuppett, and V. Schlegel. 2006. Evaluation of SafTest TM methods for monitoring frying oil quality. Journal of the American Oil Chemists' Society, 83(1), 15.
Frega, N., M. Mozzon, and G. Lercker. 1999. Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists' Society, 76(3), 325-329.
Fritsch, C. W. 1981. Measurements of frying fat deterioration: a brief review. Journal of the American Oil Chemists’ Society, 58(3), 272-274.
Gertz, C. 2000. Chemical and physical parameters as quality indicators of used frying fats. European Journal of Lipid Science and Technology, 102(8‐9), 566-572.
Gil, B., Y. J. Cho, and S. Yoon. H. 2004. Rapid determination of polar compounds in frying fats and oils using image analysis. LWT-Food Science and Technology, 37(6), 657-661.
Grossi, M., and B. Riccò. 2017. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. Journal of Sensors and Sensor Systems, 6, 303-325.
Hein, M., H. Henning, and H. D. Isengard. 1998. Determination of total polar parts with new methods for the quality survey of frying fats and oils. Talanta, 47(2), 447-454
Hoja, J., and G. Lentka. 2009. Portable analyzer for impedance spectroscopy. In XIX IMEKO World Congress Fundamental and Applied Metrology (pp. 497-502).
Hoja, J., and G. Lentka. 2010. Interface circuit for impedance sensors using two specialized single-chip microsystems. Sensors and Actuators A: Physical, 163(1), 191-197.
Innawong, B., P. Mallikarjunan, J. Irudayaraj, and J. E. Marcy. 2004. The determination of frying oil quality using Fourier transform infrared attenuated total reflectance. LWT-Food Science and Technology, 37(1), 23-28.
Jafari, H., M. H. Idris, A. Ourdjini, H. Rahimi, and B. Ghobadian. 2011. EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant. Fuel, 90(3), 1181-1187.
Kalogianni, E. P., T. D. Karapantsios, and R. Miller. 2011. Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil. Journal of Food Engineering, 105(1), 169-179.
Kalogianni, E. P., D. Georgiou, M. Romaidi, S. Exarhopoulos, D. Petridis, C. Karastogiannidou, ... and P. Karakosta. 2017. Rapid methods for frying oil quality determination: evaluation with respect to legislation criteria. Journal of the American Oil Chemists' Society, 94(1), 19-36
Kaufmann, A., B. Ryser, and B. Suter. 2001. HPLC with evaporative light scattering detection for the determination of polar compounds in used frying oils. European Food Research and Technology, 213(4-5), 372-376.
Khaled, A. Y., A. S. Abd, and F. Z. Rokhani. 2014, July. Impedance sensor probe for degradation assessment of cooking oil. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland (Vol. 610).
Khaled, A. Y., S. A. Aziz, and F. Z. Rokhani. 2014. Development and evaluation of an impedance spectroscopy sensor to assess cooking oil quality. International Journal of Environmental Science and Development, 5(3), 299.
Khaled, A. Y., S. A. Aziz, and F. Z. Rokhani. 2015. Capacitive sensor probe to assess frying oil degradation. Information Processing in Agriculture, 2(2), 142-148.
Kress-Rogers, E., P. N. Gillatt, and J. B. Rossell. 1990. Development and evaluation of a novel sensor for the in situ assessment of frying oil quality. Food Control, 1(3), 163-178.
Kung, Y., B. C. Hsieh, T. J. Cheng, C. K. Huang, and R. L. Chen. 2012. Impedimetric sensing of the biodiesel contents in diesel fuels with a carbon paste electrode pair. Fuel, 102, 724-728
Lawson, H. W. 1985. Standards for fats & oils.
Lasia, A. 2014. Electrochemical impedance spectroscopy and its applications (Vol. 7). New York: Springer.
Man, Y. C., and W. W. Hussin. 1998. Comparison of the frying performance of refined, bleached and deodorized palm olein and coconut oil. Journal of Food Lipids, 5(3), 197-210.
Marinova, E. M., K. A. Seizova, I. R. Totseva, S. S. Panayotova, I. N. Marekov, and S. M. Momchilova. 2012. Oxidative changes in some vegetable oils during heating at frying temperature. Bulgarian Chemical Communications, 44(1), 57-63.
Marmesat, S., E. Rodrigues, J. Velasco, and C. Dobarganes. 2007. Quality of used frying fats and oils: comparison of rapid tests based on chemical and physical oil properties. International journal of food science & technology, 42(5), 601-608.
Marmesat, S., J. Velasco, G. Márquez-Ruiz, and M. C. Dobarganes. 2007. A rapid method for determination of polar compounds in used frying fats and oils. Grasas y aceites, 58(2), 179-184.
M'Peko, J. C., D. L. Reis, J. E. De Souza, and A. R. Caires. 2013. Evaluation of the dielectric properties of biodiesel fuels produced from different vegetable oil feedstocks through electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 38(22), 9355-9359.
Mubiru, E., K. Shrestha, A. Papastergiadis, and B. De Meulenaer. 2013. Improved gas chromatography-flame ionization detector analytical method for the analysis of epoxy fatty acids. Journal of Chromatography A, 1318, 217-225.
Nawar, W. W. 1969. Thermal degradation of lipids. Journal of agricultural and food chemistry, 17(1), 18-21.
Nakonieczna, A., B. Paszkowski, A. Wilczek, A. Szypłowska, and W. Skierucha. 2016. Electrical impedance measurements for detecting artificial chemical additives in liquid food products. Food Control, 66, 116-129.
Nayak, P. K., U. Dash, K. Rayaguru, and K. Krishnan. R. 2016. Physio‐Chemical Changes During Repeated Frying of Cooked Oil: A Review. Journal of Food Biochemistry, 40(3), 371-390.
Nor, F. M., S. Mohamed, N. A. Idris, and R. Ismail. 2008. Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food chemistry, 110(2), 319-327.
Osawa, C. C., L. A. G. Gonçalves, H. F. Gumerato, and F. M. Mendes. 2012. Study of the effectiveness of quick tests based on physical properties for the evaluation of used frying oil. Food Control, 26(2), 525-530.
Pokorny, J. 1989. Flavor chemistry of deep fat frying in oil. Flavor chemistry of lipid foods, 113-155.
Sanibal, E. A. A., and J. Mancini-Filho. 2004. Frying oil and fat quality measured by chemical, physical, and test kit analyses. Journal of the American Oil Chemists' Society, 81(9), 847-852.
Scandurra, G., G. Tripodi, and A. Verzera. 2013. Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119(4), 738-743.
Shervedani, R. K., A. H. Mehrjardi, and N. Zamiri. 2006. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry, 69(2), 201-208.
Stier, R. F. 2004. Tests to monitor quality of deep‐frying fats and oils. European Journal of Lipid Science and Technology, 106(11), 766-771.
Sumnu, S. G., and S. Sahin. 2008. Advances in deep-fat frying of foods. CRC Press.
Tan, J., R. Li, Z. T. Jiang, S. H. Tang, Y. Wang, M. Shi, ... and H. Wang. 2017. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil. Food chemistry, 217, 274-280.
Tena, N., R. Aparicio-Ruiz, and D. L. García-González. 2014. Use of polar and nonpolar fractions as additional information sources for studying thermoxidized virgin olive oils by FTIR. Grasas y Aceites, 65(3), 030.
Tompkins, C., and E. G. Perkins. 1999. The evaluation of frying oils with the p-anisidine value. Journal of the American Oil Chemists' Society, 76(8), 945-947.
Tseng, Y. C., R. Moreira, and X. Sun. 1996. Total frying‐use time effects on soybean‐oil deterioration and on tortilla chip quality. International journal of food science & technology, 31(3), 287-294.
Tyagi, V. K., and A. K. Vasishtha. 1996. Changes in the characteristics and composition of oils during deep-fat frying. Journal of the American Oil Chemists’ Society, 73(4), 499-506.
Weisshaar, R. 2014. Quality control of used deep‐frying oils. European journal of lipid science and technology, 116(6), 716-722.
Xu, X. Q. 2000. A new spectrophotometric method for the rapid assessment of deep frying oil quality. Journal of the American Oil Chemists' Society, 77(10), 1083-1086.
Xu, X. Q. 2003. A chromametric method for the rapid assessment of deep frying oil quality. Journal of the Science of Food and Agriculture, 83(13), 1293-1296.
Yang, J., K. S. Zhao, and Y. J. He. 2016. Quality evaluation of frying oil deterioration by dielectric spectroscopy. Journal of Food Engineering, 180, 69-76.
Yang, Y., Q. Li, X. Yu, X. Chen, and Y. Wang. 2014. A novel method for determining peroxide value of edible oils using electrical conductivity. Food control, 39, 198-203.
Yu, X., C. Yang, S. Du, and J. M. Gao. 2012. A new method for determining free fatty acid content in edible oils by using electrical conductivity. Food Analytical Methods, 5(6), 1453-1458.
Zahir, E., R. Saeed, M. A. Hameed, and A. Yousuf. 2014. Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arabian Journal of Chemistry.
Zhang, D., Y. Lu, Q. Zhang, L. Liu, S. Li, Y. Yao, ... and Q. Liu. 2016. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors and Actuators B: Chemical, 222, 994-1002.
Zhou, Z., Y. Wang, Y. Jiang, Y. Diao, P. Strappe, P. Prenzler, ... and C. Blanchard. 2016. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure. Lipids in health and disease, 15(1), 86
Ziaiifar, A. M., N. Achir, F. Courtois, I. Trezzani, and G. Trystram 2008. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep‐fat frying process. International journal of food science & technology, 43(8), 1410-1423.
行政院衛生署食品藥物管理局。2011。衛生福利部食品藥物管理署。台北: 行政院衛生署。網址: http://www.fda.gov.tw/TC/index.aspx。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72335-
dc.description.abstract油炸在我們日常食物中是個簡單、快速且普遍的烹調手法,然而油炸油歷經連續反覆高溫烹煮食物的過程中,會發生水解、氧化與熱反應,形成許多對人體有害的物質,使得油炸油品質逐漸劣化。因此快速檢測油炸油何時該丟棄是一個具有挑戰性的任務,目前尚未有個令人滿意於現地分析的方法。本研究透過電化學阻抗頻譜分析法,來觀察油炸油品質隨油炸時間產生劣化之阻抗頻譜變化趨勢,希望藉此評估開發一個新型態油炸油品質快速檢測平台之可行性並探究其阻抗頻譜變化之理論基礎。電化學阻抗頻譜搭配疏水性碳電極組,以100 mV之正弦訊號從10-2掃引至103 Hz,無偏壓且控溫於30 ℃之實驗結果顯示,本檢測系統不需要對樣品進行前處理,能輕易地於Nyquist圖譜中觀測出電荷轉移阻抗(Charge Transfer Resistance;RCT)下降趨勢,經過等效電路模擬後可得知油炸油歷經20小時油炸模擬試驗後,RCT從新鮮油炸油之57.85±1.45 GΩ大幅下降為8.43±1.12 GΩ,而官方油炸油劣化指標之總極性物質(Total Polar Compounds;TPC)含量百分比亦相對應地從新鮮油炸油之5.5 %增加為23.5 %,且RCT與TPC含量百分比呈現高度負相關,因此RCT可視為判斷油炸油品質的潛力指標。藉本研究結果證實,電化學阻抗頻譜分析法搭配疏水性碳電極組之實驗設計的確具有被開發成為油炸油品質快速檢測平台之可行性。zh_TW
dc.description.abstractDeep-frying is a simple, rapid and popular cooking method in our daily foods. There are several chemical reactions occurring during repetitive and continuous deep-frying process, which gives rise to the formation of considerable number of harmful compounds that significantly deteriorate the quality of deep-frying oil. To determine the point at which the deep-frying oil should be discarded rapidly is thus a challenging task, and no satisfactory method for real-time field analysis is available to date. Our work was to study the electrochemical impedance spectroscopic (EIS) behavior of deep-frying oil during heating, as well as assess the feasibility of developing an EIS platform for the quality of deep-frying oil. EIS measurement was scanned from 10-2 Hz to 103 Hz at 30 °C with an unbiased 100 mV sinusoidal signal through a pair of screen-printed carbon electrodes. The result showed that the sample didn’t need any pretreatment and the charge transfer resistance (RCT) in Nyquist plot decreased with increasing the frying cycles. The resulted EIS spectrum was fit to the Randles equivalent circuit for further data interpretation. RCT was gradually decreased from 57.85±1.45 GΩ (fresh frying oil) to 8.43±1.12 GΩ (oil sample after 20 hours frying simulation test), and total polar compounds (TPC) content also increased from 5.5 % to 23.5 %. Since RCT showed obvious negative correlation with the content of TPC, it would be a potential index for the quality of deep-frying oil. Electrochemical impedance spectroscopic has been proved that it has potential to develop a rapid sensing platform for deep-frying oil quality through a pair of screen printed carbon paste electrodes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:36:05Z (GMT). No. of bitstreams: 1
ntu-107-R05631006-1.pdf: 1356673 bytes, checksum: c07c0a688755cefc378b987b35b1b88b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 前言及研究目的 1
第二章 文獻探討 3
2.1 油炸油成分 3
2.2 油炸油變質的原因 5
2.2.1 水解反應 5
2.2.2 氧化反應 6
2.2.3 熱反應 7
2.3 油炸油品質指標 8
2.3.1 總極性化合物含量 8
2.3.2 酸價 10
2.3.3 其他分析方法 10
2.3.4 商品化快速檢測方法 12
2.4 電化學阻抗頻譜分析 17
第三章 實驗與研究方法 23
3.1 實驗儀器 23
3.2 實驗藥品與材料 23
3.3 油炸實驗條件與取樣設定 24
3.4 總極性物質含量測定 24
3.5 酸價測定 25
3.6 黏度測定 25
3.7 電化學阻抗頻譜分析 25
第四章 結果與討論 28
4.1 總極性化合物含量、酸價、黏度與油炸時間之關係 28
4.2 電化學阻抗頻譜分析之等效電路模型修正 31
4.3 油炸油之電化學阻抗圖譜及等效電路元件數值分析 33
4.4 電化學阻抗頻譜與總極性物質含量分析比較 36
4.5 電極間距對電化學阻抗分析之影響 37
4.6 電極面積對電化學阻抗分析油品之影響 39
4.7 檢測溫度對電化學阻抗分析之影響 40
4.8 電化學阻抗頻譜以單一頻率檢測與總極性物質含量分析比較 42
第五章 結論與未來展望 45
5.1 結論 45
5.2 未來展望 45
文獻參考 46
dc.language.isozh-TW
dc.subject油炸油品質zh_TW
dc.subject快速檢測zh_TW
dc.subject電化學阻抗頻譜分析法zh_TW
dc.subject總極性化合物zh_TW
dc.subject網版印刷碳電極zh_TW
dc.subjectScreen-printed carbon electrodeen
dc.subjectElectrochemical impedance spectroscopyen
dc.subjectQuality of deep-frying oilen
dc.subjectRapid sensingen
dc.subjectTotal polar compoundsen
dc.title油炸油品質快速檢測平台zh_TW
dc.titleA Rapid Sensing Platform for Deep-Frying Oil Qualityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳力騏,陳林祈,龔毅
dc.subject.keyword電化學阻抗頻譜分析法,油炸油品質,網版印刷碳電極,總極性化合物,快速檢測,zh_TW
dc.subject.keywordElectrochemical impedance spectroscopy,Quality of deep-frying oil,Screen-printed carbon electrode,Total polar compounds,Rapid sensing,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201803664
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved