請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Bing-Yuan Yang | en |
| dc.contributor.author | 楊秉元 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:35:32Z | - |
| dc.date.available | 2018-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | Alloway, B.J., 1995. HeavyMetals in Soils. BlackieAcademic and Professional. London.
Ballesteros, M., Oliva, J., Negro, M., Manzanares, P.I., 2004. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process Biochemistry. 39: 1843-1848. Bryce, J.R.G., 1980. Sulfite pulping. In: Case, J.P. (Ed.), Pulp and paper: Chemistry and Chemical Technology, third ed. John Wiley & Sons, New York, pp. 291-376. Burken, J.G., Schnoor, J.L., 1997. Uptake and metabolism of atrazine by poplar trees. Environmental Science and Technology. 31: 1399-1406. Burken, J.G., Schnoor, J.L., 1999. Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. International Journal of Phytoremediation. 1: 139-151. C.E. Wyman, N.D. Hinman. Fundamentals of production from renewable feedstocks and use as a transportation fuel. Applied Biochemistry and Biotechnology, 24 (1990) 735-754. Cara, C., Ruiz, E., Ballesteros, M., Manzanares, P., Negro, M.J., Castro, E., 2008. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 87: 692-700. Cara, C., Ruiz, E., Ballesteros, M., Manzanares, P., Negro, M.J., Castro, E., 2008. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 87: 692-700. Chen, Z.S., 2002. The remediation of soil contaminated by heavy metals and limitations of technology in Taiwan. Environmental Protection Monthly. 2(3): 71-72. Chen, Z.S., 2003. Heavy-metal contamination of agricultural soils for remediation of technology and related issues. TASGEP Newsletter. 9: 2-9. Dushenkov V., Kumar, P.B.A.N., Motto, H., Raskin, I., 1995. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology. 29: 1239-1245. Gray, K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Current Opinion in Chemical Biology. 10: 141-146. Gupta, A.K., Sinha, S., 2007. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Bioresource Technology. 98: 442-446. Hendriks, A., Zeeman, G., 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresource Technology. 100: 10-18. Heuser, E., 1950. Trends in fundamental research in the cellulose and wood pulp field. TAPPI 33, 118-124. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science. 315(5813): 804-807. Hooda, P.S., McNulty, D., Alloway, B.J., Aitken, M.N., 1997. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. Journal of the Science of Food and Agriculture. 73 (4): 446-454. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., Preston, J.F., 1987. Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology. 53(10): 2420-2425. Ingram, L.O., Ohta, K., Wood, B.E., 1998. Recombinant cells that highly express chromosomally integrated heterologous genes. United States Patent 5,821,093. J.D. Wright, C.E. Wyman, K. Grohmann, Simultaneous saccharification and fermentation of lignocellulose, Applied Biochemistry and Biotechnology, 18 (1988) 75-90. Jang, F.M., 1997. Studies on edible chenopod in Taiwan. The department of agronomyin national Taiwan university. The master thesis. Kidd, P., Barcelo, J., Bernal, M.P., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., Monterroso. C., 2009. Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ. Exp. Bot.. 67: 243–259 Kim, N.D., Fergusson, J.E., 1994. Seasonal variations in the concentrations of cadmium, copper, lead and zinc in leaves of the horse chesnut (Aesculus hippocastanum L.). Environmental Pollution. 86 (1): 89-97. Kumar P.B.A.N., Dushenkov, V., Motto, H., Rasakin, I., 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science and Technology. 29: 1232-1238. Kuo, Y.L., 2006. Study on the Sustainable Utilization of National Plant Red Dragonfly--Cultivation and Ecological Physiological Characteristics of Ethnic Plant Red Dragonfly. Science and Technology Project Research Report of the Agricultural Committee of the Executive Yuan. Kuo, Y.L., Yang, Y.P., Tsai, P.J. Ger M.J., 2008. Sustainable utilization of an ethnobotanical plant, Chenopodium sp. in Taiwan. Council of Agriculture, Taiwan, R.O.C. Lau, M.W., Gunawan, C., Balan, V., Dale, B.E., 2010. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnology for Biofuels. 3(11): 1-10. LeDuc, D.L., Tarun, A.S., Montes-Bayón, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.Y., Tagmount, A., deSouza, M., Neuhierl, B., Böck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol. 135: 377–383. Lin, H.T., Chen, S.W., Shen, J.R., Weng, S.S., 2005. Phytoremediation of heavy metal-contaminated soil with local plant. The Plant Protction Bulletin. 47: 241-250. M. Takagi, S. Abe, S. Suzuki, G. Emert, N. Yata. A method for production of alcohol directly from cellulose using cellulase and yeast. Proceedings of Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. New Delhi, India, (1977) 551-571. McGrath, S.P., 1998. Phytoextraction for soil remediation. In Plants that Hyperaccumulate Heavy Metals. Ed. R R Brooks. CAB International, Wallingford,UK. pp 261–287. McGrath, S.P., Zhao, F.J., Lombi, E., 2002. Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy. 75: 1-56. Meier, H., 1962. On th behavior of wood hemicelluloses under different pulping conditions, Part I Birch hemicelluloses, Svensk Papperstidning 65, 299-305. Mellem, J.J., Baijnath, H., Odhav, B., 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health, Part A 44:568–575. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96, 673-686. Mulligan, C.N., Yong, R.N. and Gibbs, B.F., 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology. 60: 19-207. Pan, X., Arato, C., Gilkes, N., Gregg, D. Mabee, W., Pye, k., Xiao, Z., Zhang, X., Saddler, J., 2005. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering 90(4), 473-481. Pfister, K., Sjostrom, E., 1977. The formation of monosaccharides and aldonic and uronic acids during ulphite cooking. Paperi ja Puu 59, 711-720. Pilon-Smits, E., 2005. Phytoremediation. Annual Review of Plant Biology. 56: 15-39. Probst, A., Liu, H., Fanjul, M., Liao, B., Hollande, E., 2009. Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environmental and Experimental Botany. 66:297–308. Ralph, P.J., Burchett, M.D., 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environmental Pollution. 103: 91-101. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., Castro, E., 2008. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology. 42: 160-166. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry. 40(12): 3693-3700. Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annual Review of Plant Physiology. 49: 643-68. Sassner, P., Galbe, M., Zacchi, G., 2006. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content, Enzyme and Microbial Technology. 39: 756-762. Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B., 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research. 1: 20-43. Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 83: 1-11. Sundman, J., 1950. Sockerutlosningen vid sulfitcellulosakoket. Paperi ja Puu 32,267-274. Taherzadeh, M.J., Karimi, K., 2007. Acid-based hydrolysis processes for ethanol from lignocellulosic materials A review. Bioresources. 2(3): 472-499. Tiwari, K.K., Dwivedi, S., Singh, N.K., Rai, U.N., Tripathi, R.D., 2009. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. Journal of Environmental Biology. 30:389–394. Vangronsveld, J., Assche, F., Clijsters, H., 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environment Pollution. 87: 51-59. Walker, D.J., Clemente, R., Bernal, M.P., 2004. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemophere. 57: 215-224. Wei, S.H., Zhou, Q.X., Wang, X., Cao, W., 2004. Hyperaccumulative characteristics of some weeds distributed round a Pb-Zn mining site. Techniques and Equipment for Environmental Pollution control. 5(3): 33-39. Yang, Y.P., Liu, H.Y., 2006. Study on the Sustainable Utilization of Ethnic Plant Red Dragonfly--A Study on the Classification and Geographical Geography of the Red Dragonfly System. Science and Technology Project Research Report of the Agricultural Committee of the Executive Yuan. Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R., 2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100, 2411-2418. Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R., 2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100, 2411-2418. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72325 | - |
| dc.description.abstract | 台灣藜 (Chenopodium formosanum Koidz.)具有適應力強、生長速度快等優點。本研究以台灣藜在不同重金屬濃度條件下,進行播種栽植實驗,探討台灣藜針對不同重金屬移除之能力,及探究其作為一多目標生質酒精料源作物之可行性。
利用台灣藜以重金屬污染土壤鎳、鉛及鋅進行栽植觀察蓄積效果,台灣藜在高濃度鉛 (10000 mg/kg soil)的環境存活情形良好,且具有豐富的吸收效果,葉部吸收重金屬為土壤濃度的0.46-3.7倍,穗部為0.88-2.94倍,根部為0.41-0.50倍,在高濃度Ni及Zn的環境下,則生長受到抑制甚至導致死亡。 以SPORL法進行前處理後可去除較多的木質素,木質素的含量可降至9.18%,以酸蒸氣爆碎前處理,木質素的含量將會降低,全纖維素含量也相對較SPORL法來的高。酵素水解試驗以酸蒸氣爆碎前處理,所獲得的葡萄糖轉換率最佳。木糖的轉換率以SPORL法前處理比蒸氣爆碎前處理來較佳。 以共發酵菌種 (Escherichia coli KO11)進行同時糖化與發酵,經酸蒸氣爆碎處理試材的乙醇轉換率最高,每公斤的的試材可得到0.16公升的酒精,以SPORL法進行蒸煮前處理,每公斤的的試材可得到0.14公升的酒精。 以含重金屬植體進行同時糖化與共發酵試驗,顯示含有重金屬Ni、Pb、Zn的植體對於發酵效率具有抑制影響,其中以Zn的影響最為明顯,Ni的影響次之,Pb 對於發酵的影響較小,雖然重金屬對發酵效率具有影響,但並非完全的抑制,因此對於重金屬污染土壤以植生復育後植體的再利用仍有相當的潛力。 | zh_TW |
| dc.description.abstract | Taiwanese chenopod (Chenopodium formosanum Koidz.) has strong productivity and great adeptness. Taiwanese chenopod was seeded in soils with different heavy metal concentrations. Capabilities for heavy metal removals and bioethanol raw material supply were investigated to survey the feasibility for multi-purpose application for Taiwanese chenopod.
Taiwanese chenopod was grown in soils containing Ni, Pd and Zinc, and the accumulation in Taiwanese chenopod biomass was investigated. Taiwanese chenopod grew well under high concentration of Pd at 10000 mg/kg soil. High uptakes were observed: leaves absorbed 0.46 to 3.7 times of soil Pb concentration, tassel absorbed 0.88 to 2.94 times of soil Pb concentration, and root absorbed 0.41 to 0.50 times of soil Pb concentration. However, Taiwanese chenopod could not endure high concentration of Ni and Zn and showed inhibited growth and death. Higher lignin removals were found using SPORL (sulfite pretreatment to overcome recalcitrance of lignocellulose), with the lowest pretreated biomass lignin contents found at 9.18 %. Acid steam explosion could also reduce lignin and increase holocellulose contents. For enzymatic hydrolysis, steam exploded biomass yielded higher glucose conversion. While SPROL pretreated biomass yielded higher xylose conversion. A co-fermentation strain, Escherichia coli KO1, was to conduct simultaneous saccharification and fermentation. Final ethanol yield from acid exploded and SPROL treated Taiwanese chenopod biomass could reach 0.16 and 0.14 l ethanol per dried biomass. Simultaneous saccharification and fermentation was also conducted on heavy metal conducted biomass. Presence of Ni, Pd and Zn was showed inhibiting fermentation yields. Negative impacts of heavy metals on fermentation yields were demonstrated with the following orders: Zn, Ni and Pb. Although negative impacts of heavy metals were found, this study still found bioethanol converting potentials of resulted biomass after phytoremediation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:35:32Z (GMT). No. of bitstreams: 1 ntu-107-R99625043-1.pdf: 1415779 bytes, checksum: 3f693040b71d1a95e445b6baab524130 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Contents iv Figure Index vi Table Index vii Chapter 1 Introduction 1 Chapter 2 Literature review 4 2.1 Heavy metal pollution 4 2.2 Remediation technologies for heavy metal contaminated soil 6 2.3 Phytoremediation 8 2.4 Effects of heavy metals on plants 13 2.5 Cellulosic ethanol 14 2.6 Pretreatment of lignocellulosic materials 16 2.7 SHF and SSF 20 2.8 Co-fermentation bacteria 23 2.9 Taiwanese chenopod 26 Chapter 3 Materials and Methods 29 3.1 Planting seedlings and planting methods 29 3.2 Heavy metal pollution in soil 30 3.3 Heavy metal analysis 30 3.4 Steam explosion pretreatment 31 3.5 SPORL pretreatment 31 3.6 Chemical composition analysis 32 3.7 Enzymatic hydrolysis 32 3.8 Fermentation strains 33 3.9 Simultaneous saccharification and fermentation (SSF) 33 Chapter 4 Result and Discussion 35 4.1 Taiwanese chenopod biomass survey 35 4.2 Taiwanese chenopod heavy metal pollution 38 4.3 Taiwanese chenopod heavy metal adsorption 42 4.4 Chemical composition by steam explosion and SPORL pretreatment 53 4.5 Enzymatic hydrolysis 55 4.6 Simultaneous saccharification and fermentation 64 4.7 SSF with heavy metal implants 65 Chapter 5 Conclusion 69 Chapter 6 References 71 | |
| dc.language.iso | en | |
| dc.subject | 台灣藜 | zh_TW |
| dc.subject | 生質酒精 | zh_TW |
| dc.subject | 蒸汽爆碎 | zh_TW |
| dc.subject | 重金屬 | zh_TW |
| dc.subject | 植生復育 | zh_TW |
| dc.subject | Heavy metal | en |
| dc.subject | Phytoremediation | en |
| dc.subject | Bioethanol | en |
| dc.subject | Steam explosion | en |
| dc.subject | Chenopodium formosanum Koidz | en |
| dc.title | 台灣藜移除土壤重金屬及生質酒精生產之探討 | zh_TW |
| dc.title | Heavy metal removal from soil and bioethanol production by Chenopodium formosanum Koidz. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王亞男,陳信泰,蕭英倫,楊遠波 | |
| dc.subject.keyword | 台灣藜,生質酒精,蒸汽爆碎,重金屬,植生復育, | zh_TW |
| dc.subject.keyword | Chenopodium formosanum Koidz,Bioethanol,Steam explosion,Heavy metal,Phytoremediation, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201803528 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
