Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周楚洋
dc.contributor.authorYan-Wen Wangen
dc.contributor.author王衍文zh_TW
dc.date.accessioned2021-06-17T06:34:45Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationReferences
台灣電力公司。2017。再生能源發電概況。網址:https://www.taipower.com.tw/tc/page.aspx?mid=204。
Advanced String Monitoring System of today. Available at: https://adsprojects.wordpress.com/.
Ashton, T. S. 1997. The industrial revolution 1760-1830. OUP Catalogue.
Akyildiz, I. F., W. Su, Y. Sankarasubramaniam and E. Cayirci. 2002. A survey on sensor networks. IEEE Communications magazine. 40(8). 102-114.
Bodur, M., and M. Ermis. 1994. Maximum power point tracking for low power photovoltaic solar panels. In Electrotechnical Conference, 1994. Proceedings., 7th Mediterranean. 758-761. IEEE.
Bose, B. K., P. M. Szczesny, and R. L. Steigerwald. 1985. Microcomputer control of a residential photovoltaic power conditioning system. IEEE Transactions on Industry applications. (5): 1182-1191.
Boluwaji, M. O. and D. O. Onyedi. 2016. Comparative study of ground measured, satellite-derived, and estimated global solar radiation data in Nigeria. Journal of Solar Energy. 10: 1-7.
Bucciarelli, L. L., B. L. Grossman, E. F. Lyon and N. E. Rasmussen. 1980. Energy balance associated with the use of a maximum power tracer in a 100-kW-peak power system (No. COO--4094-72; CONF-800106--16). Massachusetts Inst. of Tech., Lexington (USA). Lincoln Lab..
Bulusu, N., D. Estrin, L. Girod and J. Heidemann. 2001. Scalable coordination for wireless sensor networks: self-configuring localization systems. In International Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, UK.
Carroll, D. P., Gareis, Krause G. E., Ong P. C., Schwartz C. M., R. J. and O. Wasynczuk. 1983. Dynamic simulation of dispersed grid-connected photovoltaic power systems: Task 1-modelling and control (No. SAND-83-7018). Purdue Univ., Lafayette, IN (USA). School of Electrical Engineering.
Cornaro, C., F. Bucci, M. Pierro, F. Del Frate, S. Peronaci and A. Taravat, 2013. Solar radiation forecast using neural networks for the prediction of grid connected pv plants energy production (dsp project). In Proceedings of 28th European Photovoltaic Solar Energy Conference and Exhibition : pp. 3992-3999.
Coakley, J. A. 2003. Reflectance and albedo, surface. Encyclopedia of the Atmosphere : 1914-1923.
Esram, T. and P. L. Chapman. 2007. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on energy conversion. 22(2): 439-449.
Estrin, D., L. Girod, G. Pottie and M. Srivastava. 2001. Instrumenting the world with wireless sensor networks. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International Conference on. IEEE. Vol. 4: pp. 2033-2036.
Gow, J. A., and C. D. Manning. 2000. Photovoltaic converter system suitable for use in small scale stand-alone or grid connected applications. IEE Proceedings-Electric Power Applications. 147(6): 535-543.
Guy, C. 2006. Wireless sensor networks. In Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic Technology, and Artificial Intelligence. International Society for Optics and Photonics. Vol. 6357: p. 63571I
Hart, G. W., H. M. Branz and C. H. Cox Iii. 1984. Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays. Solar cells. 13(2): 185-195.
Heinzelman, W. R., J. Kulik and H. Balakrishnan. 1999. Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking ACM. pp. 174-185.
Heinzelman, W. R., A. Chandrakasan and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on IEEE. :pp. 10-pp.
Hiyama, T., S. Kouzuma and T. Imakubo. 1995. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Transactions on Energy Conversion. 10(2): 360-367.
Hilloowala, R. M., and A. M. Sharaf. 1992. A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme. In Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE :pp. 762-769. IEEE.
Jang, H. S., K. Y. Bae, H. S. Park, and D. K. Sung. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy. 7(3): 1255-1263.
Jeong, Y. S., J. B. Park, H. G. Jung, J. Kim, X. Luo, J. Lu and Y. J. Lee. 2015. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium–air batteries. Nano letters. 15(7): 4261-4268.
Jang, H. S., K. Y. Bae, H. S. Park and D. K. Sung. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy, 7(3): 1255-1263.
Kaiser, A. S., B. Zamora, R. Mazón, J. R. García and F. Vera. 2014. Experimental study of cooling BIPV modules by forced convection in the air channel. Applied Energy. 135: 88-97.
Lambert, J. H. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett.
Mellit, A., and A. M. Pavan. 2010. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy. 84(5): 807-821.
Mitchell, M. L. and J. H. Mulherin. 1996. The impact of industry shocks on takeover and restructuring activity. Journal of financial economics. 41(2): 193-229.
Mihalakakou, G., M. Santamouris and D. N. Asimakopoulos. 2000. The total solar radiation time series simulation in Athens, using neural networks. Theoretical and Applied Climatology. 66(3-4): 185-197.
Pan, C. T., J. Y. Chen, C. P. Chu and Y. S. Huang. 1999. A fast maximum power point tracker for photovoltaic power systems. In Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. IEEE. Vol. 1: pp. 390-393.
Renewable energy world. 2016. The 2016 Global PV Outlook: US, Asian Markets Strengthened by Policies to Reduce CO2. Available at: https://www.renewableenergyworld.com/articles/2016/01/the-2016-global-pv-outlook-u-s-and-asian-markets-strengthened-by-policies-to-reduce-co2.html. Accessed 25 June 2018.
Schaake, J., J. Pailleux, J. Thielen, R. Arritt, T. Hamill, L. Luo and F. Pappenberger. 2010. Summary of recommendations of the first workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo‐France, Toulouse, France, 15–18 June 2009. Atmospheric Science Letters. 11(2): 59-63.
Sunny Rich System Co., Ltd。2016。太陽能的歷史。網址:http://www.sunnyrichsystem.com.tw/history_s.html。上網日期:2018-06-25。
Sze, S. M., and K. K. Ng. 1981. Physics of semiconductor devices, ed. John Willey & Sons,.
Sullivan, C. R., and M. J. Powers. 1993. A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle. In Power Electronics Specialists Conference, 1993. PESC'93 Record., 24th Annual IEEE :574-580.
Schoeman, J. J., and J. V. Wyk. 1982. A simplified maximal power controller for terrestrial photovoltaic panel arrays. In Power Electronics Specialists conference, 1982 IEEE :pp. 361-367.
Shen, C. C., C. Srisathapornphat and C. Jaikaeo. 2001. Sensor information networking architecture and applications. IEEE Personal communications. 8(4): 52-59.
Tanahashi, S., H. Kawamura, T. Matsuura, T. Takahashi and H. Yusa. 2001. A system to distribute satellite incident solar radiation in real-time. Remote Sensing of Environment, 75(3), 412-422.
Wang, J. C., Y. L. Su, J. C. Shieh and J. A. Jiang. 2011. High-accuracy maximum power point estimation for photovoltaic arrays. Solar Energy Materials and Solar Cells. 95(3): 843-851.
Vapnik, V. & S. Mukherjee 2000. Support vector method for multivariate density estimation. In Advances in neural information processing systems : pp. 659-665.
Wu, Y. K., C. R. Chen and H. Abdul Rahman. 2014. A novel hybrid model for short-term forecasting in PV power generation. International Journal of Photoenergy, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72311-
dc.description.abstract近年來環保意識急速擴張,因此台灣政府提倡要在2025達到非核家園的目標,希望能在2025年太陽能安裝容量達到20 GW。但現今太陽能安裝容量低靡,無非是因為其不穩定的發電輸出所致。太陽能的發電量會因為天氣因素而有劇烈的波動:如多雲、雨天等因素影響太陽輻射量。本研究提出一太陽能光電系統的發電量預測方法,希望能利用此研究來優化電力調度,其利用環境參數與衛星雲圖當作模型的輸入,透過PCA降維技術挑選出重要的參數,把歷經篩選的參數輸入到Artificial Neural Network模型裡進行訓練,做出了長期預測與短期預測的兩種預測照度模型,其中,太陽輻照度每10分鐘預測一次,這樣如此小的預測間隔與其他研究中使用的間隔不同。 預測間隔越長,預測結果就越準確。 然而,如果採用更長的預測間隔,則太陽輻照度變化在長時間中的變化被忽略。 因此,這項研究使用短時間間隔來預測太陽輻照度。我們分成晴天與陰天探討:晴天的預測,長期預測誤差為139.92 W/m2,短期預測為43.02 W/m2。陰天的預測,長期預測誤差為103.28 W/m2,短期預測為36.99 W/m2。並依此照度的預測結果,與歷史發電量(電流、電壓、功率等)做迴歸曲線分析,找出迴歸方程式與相關性分析,藉此預測未來太陽能系統的發電量。zh_TW
dc.description.abstractThe use of renewable energy has been actively promoted by the government in Taiwan. For example, the goal of “non-nuclear homeland” is expected to be achieved by 2025. However, the solar system installation capacity remains low, due to the unstable power output caused by unpredictable weather conditions, such as cloudy and rainy days. This study proposes a method for predicting power generation using photovoltaic systems. Various environmental parameters and satellite cloud images serve as the inputs for the prediction model. Important parameters are selected by dimensionality reduction techniques, and the filtered parameters are put into an Artificial Neural Network model to train the model. Both a long-term model and a short-term model for solar irradiance prediction are established. The solar irradiance is predicted every 10 min. Such a small prediction interval is different from the interval used in other studies. The longer the prediction interval, the more accurate the prediction results. However, the solar irradiance variation is largely ignored, if a longer prediction interval is adopted. Thus, this study uses a short interval to predict solar irradiance. The two models deal with two weather conditions: sunny and cloudy days. For sunny days, the long-term prediction error is 139.92 W / m2, and the short-term prediction error is 43.02 W / m2. For cloudy days, the long-term prediction error is 103.28 W/m2, and the short-term prediction is 36.99 W/m2. Furthermore, a regression model is used to analyze the relationship between the solar irradiance prediction results and historical power generation data (i.e., current, voltage, power, and solar irradiance), so the future solar power generation can be predicted.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:34:45Z (GMT). No. of bitstreams: 1
ntu-107-R05631035-1.pdf: 10931023 bytes, checksum: 894edf9f597eb863855e14d2c001c180 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
誌謝 i
中文摘要 iii
Abstract v
Table of Contents vii
List of Illustrations xi
List of Tables xv
Chapter 1. Introduction 2
1.1 Background 2
1.2 Motivation and Purpose 6
1.3 Thesis Organization 8
Chapter 2. Literature Review 10
2.1 Architecture of Photovoltaic System 10
2.1.1 Different Parameters Influencing the P-V curve 13
2.1.2 Semiconductor Materials 15
2.1.3 Power Generation Techniques Used by PV Systems 16
2.2 Satellite Cloud Images 25
2.2.1 Visible Light Cloud Images 26
2.3 Solar Irradiance Prediction Models 29
2.3.1 Artificial Neural Network model 31
2.3.2 Numerical weather prediction (NWP) model 32
2.3.3 Genetic algorithm (GA) 34
2.3.4 ARMA model 35
2.3.5 Support vector machine (SVM) model 36
Chapter 3. Experiment and Analysis Method 38
3.1 Experimental Setups and Materials 38
3.1.1 The architecture of the solar irradiance prediction system 38
3.2 Experimental Equipment 41
3.3 Introduction of Principle Component Analysis 48
3.4 Satellite Cloud Image and Feature Extraction 52
3.4.1 Format of visible light cloud images 52
3.4.2 Attributes of the cloud images 53
3.5 Model Implementation and Details 55
3.5.1 Artificial Neural Network and Configure 55
3.5.2 Long term and short term prediction for irradiance 57
Chapter 4. Results and Discussion 60
4.1 Data Pre-Processing and Principle Component Analysis 62
4.1.1 Factor loading and choose the characteristic parameters of cloud image 62
4.2 Satellite images as prediction inputs. 65
4.3 Artificial Neural Network for Predicting Irradiance 68
4.3.1 ANN training and test results (data implementation) 69
4.3.2 Training Process and Result Discussion 69
4.4 The performance of the ANN model and the daily prediction curves. 83
4.4.1 Irradiance prediction of sunny and cloudy days 83
4.4.2 Prediction results of sunny days and cloudy days. 85
4.5 Irradiance Versus Ipv and Ppv 90
Chapter 5. Conclusion 96
References 98
Appendices 102
Attributes of the cloud images 102
Model Assessment and Statistic index 105
dc.language.isozh-TW
dc.subject衛星雲圖zh_TW
dc.subject發電量預測zh_TW
dc.subject太陽能光電系統zh_TW
dc.subject類神經網路zh_TW
dc.subjectPhotovoltaic Systemen
dc.subjectSatellite Cloud imageen
dc.subjectPower Generation Predictionen
dc.subjectArtificial Neural Networken
dc.title基於類神經網路之太陽能光電系統發電量預測zh_TW
dc.titleSolar Power Generation Prediction Based on Artificial Neural Networken
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江昭皚,周呈霙,郭昆璋,蕭瑛東
dc.subject.keyword太陽能光電系統,衛星雲圖,發電量預測,類神經網路,zh_TW
dc.subject.keywordPhotovoltaic System,Satellite Cloud image,Power Generation Prediction,Artificial Neural Network,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201803670
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved