請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72306
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陽毅平(Yee-Pien Yang) | |
dc.contributor.author | Hui-Hsiang Lin | en |
dc.contributor.author | 林暉翔 | zh_TW |
dc.date.accessioned | 2021-06-17T06:34:29Z | - |
dc.date.available | 2021-08-24 | |
dc.date.copyright | 2018-08-24 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | [1] T. Masuzawa, Y. Nakajima, and H. Ikeda, 'Development of all directional powered wheelchair,' IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, Sept. 3-5, 2008.
[2] K. Sakai, T. Yasuda, and K. Tanaka, 'Improvements of manipulation torque transfer mechanism and assist unit for one hand drive wheelchair with a triple ring,' Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China, Dec. 19-23, 2009, pp.196-201. [3] K. Sakai, T. Yasuda, and K. Tanaka, 'Power assist effects of a new type assist unit in a one hand drive wheelchair with a triple ring,' The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 18-22, 2010, pp.6040-6045. [4] H. Park, M. Kiani, H.-M. Lee, J. Kim, and J. Block, 'A wireless magnetoresistive sensing system for an intraoral tongue-computer interface,' IEEE Transactions on Biomedical Circuits and Systems, vol. 6, issue 6, pp. 571-585, Dec. 2012. [5 ] J. Kim, X. Huo, and J. Minocha, 'Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs,' IEEE Transactions on Biomedical Engineering, vol. 59, issue 6, pp. 1787 – 1796, April. 2012. [6] Jinyi Long, 'A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair', IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp.720 - 729, June 2012. [7] Gunachandra, 'Wall following control for the application of a brain-controlled Wheelchair', Intelligent Autonomous Agents, Networks and Systems , 2014 IEEE International Conference on, pp.36 - 41, 19-21 Aug. 2014. [8] Koji Miyazaki, 'Guide following control using laser range sensor for a smart Wheelchair', ICCAS-SICE, pp.4613 - 4616, 18-21 Aug. 2009. [9] Ching-Lung Chang, 'Kinect-based Powered Wheelchair Control System', 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, pp.186 - 189, Jan. 2013. [10] T. Shibata, and T. Murakami, 'Power-assist control of pushing task by repulsive compliance control in electric wheelchair,' IEEE Transactions on Industrial Electronics, vol. 59, issue 1, pp. 511 – 520, Jan. 2012. [11] R. J. Farris and M. Goldfarb, 'Design of a multidisc electromechanical brake,' IEEE/ASME Trans. Mechatronics, vol. 16, no. 6, pp. 985–993, Dec. 2011. [12] Y.-P. Yang, H.-C. Lin, and C.-T. Lu, ' Design and integration of power wheels with rim motors for a powered wheelchair,' Proceedings of 2011 International Conference on Superconductivity and Electromagnetic Devices (ASEMD), Sydney, Australia, Dec. 14-16, 2011. [13] Y.-P. Yang, H.-C. Lin, F.-C. Tsai, C.-T. Lu, and K.-H. Tu, 'Design and Integration of dual power wheels with rim motors for a powered wheelchair,' IET, Electric Power Applications, vol. 6, issue 7, pp. 419-428, Dec. 2012. [14 ] L.Zhao,X.Zhang and J.Ji, ”A torque control strategy of brushless direct current motor with current observer,” 2015 IEEE International Conference on Mechatronics and Automation (ICMA),Beijing,2015,pp.341-345 [15] Y.I.Son,D.S.Choi,S.Lim and K.I.Kim, ”Robust current control for speed sensorless DC motor drive using reduced-order extended observer,” in Electronics Letters,vol.48,no.18,pp.1112-1114,August 30 2012 [16] I.Neborak, M.Kuchar, ” Load Torque Impact on DC Motor Current Control Accuracy” 2016 ELEKTRO,Strbske Pleso,2016,pp. [17] H.Yang,Y.Zhang,P.D.walker,J.Liang,N.Zhang and B.Xia,”Speed sensorless model predictive current control with ability to start a free running induction motor,”in IET Electric Power Application,vol.11,no.5,pp.896-901,5 2017. [18] Riyadh G. Omar, Rabee' H. Thejel,” Finite Control Set Model Predictive Current Control FCS-MPC Based on Cost Function Optimization,with Current Limit Constraints for Four-Leg VSI,”in Iraq J. Electrical and Electronic Engineering,Vol.12 ,no.1 ,2016 [19] S. M.Kazraji, R.B. Soflayi, M.B.B. Sharifian,” Sliding-Mode Observer for Speed and Position Sensorless Control of Linear-PMSM,” in Electrical, Control and Communication Engineering,vol.5,no.1,pp.5-73,2014 [20]S. Tomonobu, S. Tsuyoshi and U. Katsumi, “Vector control of permanent magnet synchronous motors without position and speed sensors,” in PESC 1995, pp.759 – 765. [21]Q. Albert., B. Wu, K. Hassan, “Sensorless control of permanent magnet synchronous motor using extended Kalman filter,”Electrical and computer Engineering Conference 2004, pp.1557 – 1562. [22]G. Garcia Soto, E. Mendes and A. Razek, “ Reduced order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drive using the extended Kalman filter technique,” Electric Power Applications, IEE Proceeding volume 146, 1999, pp.282-288. [23]T. Furuhashi, , S. Sangwongwanich, and S. Okuma, “A position – and – velocity sensorless control for brushless DC motors using an adaptive sliding mode observer”, IEEE Trans. Industrial Electronics, Vol.39, pp. 89 – 95, Apr. 1992. [24]Z.M.A. Peixoto, Sa F.M Freitas, P.F. Seixas, and B.R. Menezes, “Application of sliding mode observer for induced e.m.f., position and speed estimation of permanent magnet motors”, in 1995 Proc. Power Electronics and Drive Systems Int. Conf., pp.599 – 604. [25]M. Ertugrul, , O. Kaynak, , A. Sabanovic, and K. Ohnishi, “A generalized approach for Lyapunov design of sliding mode controllers for motion control applications”, in 1996 Proc. AMC'96-MIE Conf., pp.407 – 412. [26] K.Paponpen andM.Konghirun, “An Improved Sliding Mode Observer for Speed Sensorless Vector Control Drive of PMSM,” 2006 CES/IEEE 5th Int. Power Electron. Motion Control Conf., no. 2, pp. 1–5, 2006. [27] J.Lee, W. K.Wibowo, andS.Jeong, “Improvement of Sensorless Control Performance in Low Speed Area Based on FFT Analysis,” pp. 3–8, 2017. [28] P.Tety, A.Konaté, O.Asseu, E.Soro, andP.Yoboué, “An Extended Sliding Mode Observer for Speed , Position and Torque Sensorless Control for PMSM Drive Based Stator Resistance Estimator,” no. February, pp. 1–8, 2016 [29] S.Fukui et al., “Numerical Study of Optimization Design of High Temperature Superconducting Field Winding in 20 MW Synchronous Motor for Ship Propulsion,” vol. 22, no. 3, pp. 3–6, 2012 [30]J. J. Ren, Y. C. Liu, N. Wang, and S. Y. Liu, “Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer,” ISA Trans., pp. 1–12, Sep 2014. [31] A. Accetta, M. Cirrincione, and M. Pucci, “TLS EXIN based neural sensorless control of a high dynamic PMSM,” Control Eng. Pract., vol. 20, no. 7, pp. 725–732, July 2012. [32] P.V. Osburn, H.P. Whitaker and A. Kezer, “New developments in the design of adaptive control systems” Institute of Aeronautical sciences, 1961 [33]I.D.Landau, “A survey of model reference adaptive techniques theory and applications” Automatica, Vol. 10, pp. 353-379, 1974 [34]Karl J. Astrom, Bjorn Wittenmark, “Adaptive Control” Pearson Education India, 2nd Edition, 2001 [36]P. Swarnkar, S. K. Jain, and R. Nema, “Comparative analysis of mit rule and lyapunov in model reference adaptive control scheme,” Innovative SystemsDesign and Engineering, vol. 2, pp. 154–162, Apr. 2011 [37]K. B.Pathak andD. M.Adhyaru, “Survey of model reference adaptive control,” 2012 Nirma Univ. Int. Conf. Eng., vol. 2, pp. 1–6, 2012 [38] Lin, Faa-Jeng. 'Fuzzy adaptive model-following position control for ultrasonic motor.' IEEE Transactions on Power Electronics 12.2 (1997): 261-268. [39] Keerthi¹, K., and M. Siva Sathyanarayana. 'FUZZY IMPLEMENTATION OF MODEL REFERENCE ADAPTIVE CONTROL OF DC DRIVES.“ [40] M.Stankovic, M.Naumovic, S.Manojlovic, andS.Mitrovic, “Fuzzy model reference adaptive control of velocity servo system,” Facta Univ. - Ser. Electron. Energ., vol. 27, no. 4, pp. 601–611, 2014. [41] Jiing-Jaw Lu . “Adaptive Sliding Mode Controller Design for a Second-Order Dynamic System”, College of Electrical and Computer Engineering National Chiao Tung University , June 2010 [42] Guohai Liu, Beibei Dong, Lingling Chen, and Wenxiang Zhao 'A New Model Reference Adaptive Control of PMSM Using Neural Network Generalized Inverse' D. Liu et al. (Eds.): ISNN 2011, Part III, LNCS 6677, pp. 58–67,Springer-Verlag Berlin Heidelberg, 2011 [43] M.Tárník andJ.Murgaš, “Model reference adaptive control of permanent magnet synchronous motor,” J. Electr. Eng., vol. 62, no. 3, pp. 117–125, 2011 [44] S. K.Sar andL.Dewan, “MRAC based PI controller for speed control of D.C. motor using lab view,” WSEAS Trans. Syst. Control, vol. 9, no. 1, pp. 10–15, 2014. [45] M. L.Mekha, G.Manju, andP. G.Student, “Speed Control of BLDC Motors Using MRAC,” pp. 4–9, 2016 [46] TMS320F2806x Piccolo™ Microcontrollers datasheet (Rev. G), [Online]. Available: http://www.ti.com/lit/ds/symlink/tms320f28067.pdf [47] TMS320x2806x Piccolo Technical Reference Guide (Rev. G) , [Online].Available: http://www.ti.com/lit/ug/spruh18g/spruh18g.pdf [48] Petros Ioannou and Jing Sun. Robust Adaptive Control. Dover Publications; First Edition, 2012. [49] 楊憲東, 非線性控制與控制,成大出版社,台灣,2017。 [50] 丁奕元,基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬達之驅動控制, 碩士論文, 國立台灣大學, 台北, 2011. [51] 賴冠宇, 脈寬調變造型磁鐵於永磁同步馬達少稀土設計的研究, 碩士論文, 國立台灣大學, 台北, 2014. [52] 施華宇, 手輪馬達電動輪椅之霍爾感測器失效控制策略, 碩士論文, 國立台灣大學, 台北, 2017. [53] 林怡邵, 手輪馬達電動輪椅力矩控制暨參數識別 碩士論文, 國立台灣大學, 台北, 2017. [54] 葉治緯, 智慧型雙動力倫電動輪椅之系統整合與控制, 碩士論文, 國立台灣大學, 台北, 2018. [55] 莊詠諭,手輪馬達電動輪椅馬達驅動控制器研發與驗證, 碩士論文, 國立台灣大學, 台北, 2018. [56] 任潤柏,TMS320F28x源碼解讀,電子工業出版社,北京,2010 [57] 江維倫,創新動力輪內環形馬達與安全煞車之整合設計, 碩士論文, 國立台灣大學, 台北, 2014 [58] Sensorless Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors , [Online].Available: http://www.ti.com/lit/an/sprabq3/sprabq3.pdf [59] John Wlley, Theory of Ground Vehicles 3rd Edition ,New York,2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72306 | - |
dc.description.abstract | 本文研究目的為開發智慧型永磁無刷外轉式馬達電動輪椅,提升驅動器運算效能與電路硬體架構。新一代驅動控制器系統包含驅動策略整合並加入參考模式自適應控制於電流環力矩控制,改善電動輪椅在負載變化與參數不穩定時的性能與降低人工調適時間。
新一代的馬達驅動微控制器晶片採用德州儀器32位元的F28069, 本文中分建立兩套馬達驅動架構;數位訊號霍爾感測器回授的有感測器六步方波驅動與無感測器磁場導向控制的空間向量調變。前者調變電壓採用速度控制,後者採用派克變換後交軸的電流控制。考慮電動輪椅開發階段後續發展與動力輪模組概念,本文在交軸電流控制端導入參考模式自適應控制取代常見的比例積分控制器。將演算法以模型化基礎設計方式,透過MATLAB-SIMULINK模擬並生成符合編譯器的程式,導入整車驅動架構。 實驗階段,以本實驗室第四代電動輪椅為基礎,驅動馬達探討兩種驅動策略的效率與特性;因應需求訂定適合性能,驗證變化參數下不同馬達在空載與負載下,參考模式適應控制器相較於同套比例積分控制器有較好的控制結果。 | zh_TW |
dc.description.abstract | The purpose of the thesis is to develop powered electric wheelchair based on the outer rotor of permanent-magnet brushless motor. This research improves the controller driving efficiency and the hardware frame of drive circuits. The new generation controller system, the Model Reference Adaptive Control (MRAC), is implemented in the torque control of current loop. This step is crucial for solving the uncertainty parameters in different motor models with various loading, and reducing the time of manual adjustments.
The microcontroller chips for the new generation motor drivers are equipped Texas Instruments MCU, 32-bit, F28069. Two driving strategies are introduced: six-step square wave pwm with digital signal hall sensor feedback and field-oriented control (FOC) with Space Vector PWM. The former modulates voltage and adopts speed control, whereas the latter adopts the Park's Transformation to control the current of the q-axis. Considering the follow-up development of electric wheelchairs and the concept of a power rim motor module, this paper introduces and replaces the common proportional-integral (PI) controller with MRAC at the current of dq-axis. With the concept of model based design, using MATLAB Simulink to simulation and generate the appropriate compiler code, it is finally importing to the entire the controlling strategy of wheelchair driving program. In the experimental stage, taking the fourth generation of electric wheelchairs from our laboratory as the basis, the efficiency and characteristics of the two drive strategies of driving motor are investigated, operational adjustments are made taking account of user’s needs, appropriate response at no-load condition are determined to verify motors and loading. The result shows that MRAC demonstrates better controlling performance than the proportional-integral controller, which is capable of varying parameters of the plants. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:34:29Z (GMT). No. of bitstreams: 1 ntu-107-R05522802-1.pdf: 6512007 bytes, checksum: d675fa6b0b02a963843eb559026a8936 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 I
中文摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XIV 符號表 XV 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.2.1 電動輪椅動力系統 1 1.2.2 直流無刷馬達驅動控制 3 1.2.3 無感測器之角度與速度估測 4 1.2.4 適應控制於直流無刷馬達 5 1.3 論文架構與章節摘要 7 第2章 手輪馬達電動輪椅整車系統架構 9 2.1 手輪馬達動態方程式 9 2.1.1 手輪馬達電氣動態方程式 9 2.1.2 手輪馬達機械動態方程式 12 2.1.3 手輪馬達簡化模型 15 2.2 整車控制系統 16 2.3 整車硬體系統 19 2.3.1 上控制器[54] 19 2.3.2 下控制器 [55] 22 2.3.3 馬達驅動器 [54][55] 27 第3章 直流無刷馬達驅動理論 33 3.1 直流無刷馬達驅動原理 33 3.2 六步方波驅動[55] 36 3.3 SVPWM驅動 39 3.4 無感測器角度估測器原理 57 第4章 參考模式自適應控制理論 61 4.1 參考模式控制(Model-Reference Control) 61 4.2 參考模式自適應控制(Model-Reference Adaptive Control) 63 4.3 輸出回授MRAC適應性控制 66 第5章 控制策略與驅動原理實現 70 5.1 馬達參數估測 70 5.2 CCS編輯器介紹 72 5.2.1 CCS編輯器環境介紹 72 5.2.2 F28069寄存器功能介紹 76 5.3 六步方波驅動控制 84 5.4 SVPWM無感測驅動控制 91 5.4.1 SVPWM速度開回路控制 91 5.4.2 SVPWM電流閉回路控制 95 5.4.3 SVPWM 電流與速度閉迴路控制 98 5.5 馬達參數靈敏度分析 102 5.6 電動輪椅車重等效轉動慣量推導 105 5.7 MRAC電流閉迴路控制 108 第6章 實驗結果 110 6.1 實驗設備介紹 110 6.2 六步方波驅動之速度控制結果 113 6.3 SVPWM 電流(力矩)控制結果 114 6.4 SVPWM 搭配MRAC電流(力矩)控制結果 125 第7章 結論與未來展望 141 7.1 結論 141 7.2 未來展望 142 參考文獻 144 | |
dc.language.iso | zh-TW | |
dc.title | 參考模式適應控制之手輪馬達電動輪椅力矩電流控制器設計與驅動 | zh_TW |
dc.title | Design of Current Torque Control Based on MRAC for Rim Motor Driver of Powered Wheelchair | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭重顯(Chung-Hsien Kuo),顏家鈺(Jia-Yush Yen) | |
dc.subject.keyword | 電動輪椅,參考模式自適應控制,磁場導向空間向量調變,模型化基礎設計, | zh_TW |
dc.subject.keyword | rim motor,electric wheelchair,MRAC,six-step square wave,SVPWM,Model-Based design., | en |
dc.relation.page | 150 | |
dc.identifier.doi | 10.6342/NTU201803655 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 6.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。