Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278
Title: | Landau-Ginzburg模型的形變參數空間所聯繫的Frobenius流形 Frobenius Manifolds Associated to the Deformation Parameter Space of Landau-Ginzburg Models |
Authors: | Tzu-Ang Kuo 郭子昂 |
Advisor: | 余正道(Jeng-Daw Yu) |
Keyword: | Laudau-Ginzburg模型,Frobenius流形,環面多樣體,平滑Fano多胞形, Landau-Ginzburg model,Frobenius manifold,toric variety,smooth Fano polytope, |
Publication Year : | 2018 |
Degree: | 碩士 |
Abstract: | 首先,我們證明Landau-Ginzburg模型。接著,在數個假設之下,我們證明在Landau-Ginzburg模型的泛形變參數空間上能連繫出一個沒有度量與Euler場的Frobinus流形。對於那些支撐集是平滑Fano多胞形的非退化Laurent多項式,我們證明這些假設為真。 We first prove the Local Torelli Theorem for Landau-Ginzburg models. Next, under several conditions, we prove that there is a Frobenius manifold without metric and Euler field, associated to the universal parameter space of Landau-Ginzburg models. We prove these assumptions hold true for every nondegenerate Laurent polynomial whose support polytope is a smooth. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278 |
DOI: | 10.6342/NTU201803751 |
Fulltext Rights: | 有償授權 |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 562.12 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.