請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278| 標題: | Landau-Ginzburg模型的形變參數空間所聯繫的Frobenius流形 Frobenius Manifolds Associated to the Deformation Parameter Space of Landau-Ginzburg Models |
| 作者: | Tzu-Ang Kuo 郭子昂 |
| 指導教授: | 余正道(Jeng-Daw Yu) |
| 關鍵字: | Laudau-Ginzburg模型,Frobenius流形,環面多樣體,平滑Fano多胞形, Landau-Ginzburg model,Frobenius manifold,toric variety,smooth Fano polytope, |
| 出版年 : | 2018 |
| 學位: | 碩士 |
| 摘要: | 首先,我們證明Landau-Ginzburg模型。接著,在數個假設之下,我們證明在Landau-Ginzburg模型的泛形變參數空間上能連繫出一個沒有度量與Euler場的Frobinus流形。對於那些支撐集是平滑Fano多胞形的非退化Laurent多項式,我們證明這些假設為真。 We first prove the Local Torelli Theorem for Landau-Ginzburg models. Next, under several conditions, we prove that there is a Frobenius manifold without metric and Euler field, associated to the universal parameter space of Landau-Ginzburg models. We prove these assumptions hold true for every nondegenerate Laurent polynomial whose support polytope is a smooth. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278 |
| DOI: | 10.6342/NTU201803751 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 562.12 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
