請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72265
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡進發 | |
dc.contributor.author | Mu-Hsiu Kao | en |
dc.contributor.author | 高睦修 | zh_TW |
dc.date.accessioned | 2021-06-17T06:32:10Z | - |
dc.date.available | 2021-08-19 | |
dc.date.copyright | 2018-08-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | 1. REN21, Renewables 2018 Global Status Report. 2018, Paris: REN21 Secretariat.
2. Lee, J., B. Bagheri, and H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 2015. 3: p. 18-23. 3. Song, B. and J. Lee, Framework of designing an adaptive and multi-regime prognostics and health management for wind turbine reliability and efficiency improvement. Framework, 2013. 4(2): p. 142-149. 4. Niknam, S.A. and R. Sawhney, A framework for prognostic-based real-time life extension. 5. Ciang, C.C., J.-R. Lee, and H.-J. Bang, Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology, 2008. 19(12): p. 122001. 6. Lapira, E., D. Brisset, H.D. Ardakani, D. Siegel, and J. Lee, Wind turbine performance assessment using multi-regime modeling approach. Renewable Energy, 2012. 45: p. 86-95. 7. Feng, Y., Y. Qiu, C.J. Crabtree, H. Long, and P.J. Tavner. Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox. in European Wind Energy Conference and Exhibition 2011, EWEC 2011. 2011. Sheffield. 8. Hameed, Z., Y. Hong, Y. Cho, S. Ahn, and C. Song, Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable energy reviews, 2009. 13(1): p. 1-39. 9. 楊其昌, 高斯混合模型在風機預兆式健康管理上的應用研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2016: p. 1-95. 10. Kusiak, A. and W. Li, The prediction and diagnosis of wind turbine faults. Renewable Energy, 2011. 36(1): p. 16-23. 11. Kim, K., G. Parthasarathy, O. Uluyol, W. Foslien, S. Sheng, and P. Fleming. Use of SCADA data for failure detection in wind turbines. in ASME 2011 5th International conference on energy sustainability. 2011. American Society of Mechanical Engineers. 12. Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. in ACM Sigmod Record. 1996. ACM. 13. Uluyol, O., G. Parthasarathy, W. Foslien, and K. Kim. Power curve analytic for wind turbine performance monitoring and prognostics. in Annual conference of the prognostics and health management society. 2011. 14. Reynolds, D., Gaussian mixture models. Encyclopedia of biometrics, 2015: p. 827-832. 15. Reynolds, D.A., T.F. Quatieri, and R.B. Dunn, Speaker verification using adapted Gaussian mixture models. Digital signal processing, 2000. 10(1-3): p. 19-41. 16. Kohonen, T., The self-organizing map. Proceedings of the IEEE, 1990. 78(9): p. 1464-1480. 17. Vesanto, J. and E. Alhoniemi, Clustering of the self-organizing map. IEEE Transactions on neural networks, 2000. 11(3): p. 586-600. 18. Kohonen, T., Self-organized formation of topologically correct feature maps. Biological cybernetics, 1982. 43(1): p. 59-69. 19. Togneri, R., D. Farrokhi, Y. Zhang, and Y. Attikiouzel. A comparison of the LBG, LVQ, MLP, SOM and GMM algorithms for vector quantization and clustering analysis. in Proc. SST-92. 1 20. Bromiley, P., Products and convolutions of Gaussian probability density functions. Tina-Vision Memo, 2003. 3(4): p. 1 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72265 | - |
dc.description.abstract | 摘要
本研究使用了BIRCH演算法(Balanced Iterative Reducing and Clustering Using Hierarchies) 擅長多分群的優點改進了傳統上DBSCAN(Density-based spatial clustering of applications with noise)無法處理雜訊密度過高的問題,並可將其套用在風機健康監控平台的前處理來過濾訓練資料。分別使用高斯混合模型(Gaussian Mixture Model, GMM)和自組織映射(Self-Organizing Map ,SOM)來近似訓練資料,再根據近似出的模型或是神經元,來與測試資料計算信心值。 在計算信心值的部分,高斯混合模型針對中屯一號風機所計算出的信心值有效的反映風機的健康狀況,本文另文提出一套利用自組織映射所算出之神經元權重為依據的信心值計算方式,在面對情形較為特殊之測試資料時正確性較高斯混合模型的信心值高,並且也能表現整體風場年度信心值之變化趨勢以及對單一風力發電機進行預測。 關鍵詞:風機健康監控平台、高斯混合模型、自組織映射、信心值 | zh_TW |
dc.description.abstract | Abstract
This study takes the advantage of the BIRCH algorithm (Balanced Iterative Reducing and Clustering Using Hierarchies) which is good at multi-grouping and solves the problem of traditional DBSCAN (Density-based spatial clustering of applications with noise) which can’t handle excessive noise density to filter training data of pre-processing on wind turbine health monitoring platform. This study uses Gaussian Mixture Model and Self-Organizing Map to approximate training data, then calculates the confidence value with the approximated model or neurons. The confidence value calculated by Gaussian Mixture Model of Jung-Tuen No. 1 Wind turbine effectively reflects the health condition of the wind turbine. This study proposes a calculation model of confidence value which based on the weight of the neurons calculated by the self-Organizing Map. The calculated results show that the confidence value calculated by SOM is better than the confidence value calculated by Gaussian mixture model. It also shows the change trends of confidence value of multiwindtrubine. And the prediction of single windturbine. Key word: Wind Turbine Health Monitoring Platform, Gaussian Mixture Model, Self-Organizing Map, Confidence Value | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:32:10Z (GMT). No. of bitstreams: 1 ntu-107-R05525092-1.pdf: 2656862 bytes, checksum: d49e45c6983301f4efad63543713dc16 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 總目錄
摘要 II Abstract III 圖目錄 VI 表目錄 IX 第一章.緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究內容 3 1.4 論文架構 3 第二章.使用方法與演算法 4 2.1 BIRCH 4 2.2 DBSCAN 6 2.3 高斯混合模型 7 2.4 期望值最大演算法 9 2.5 信心值計算 10 2.6 自組織映射圖 13 2.7 SOM信心指數 15 第三章.資料前處理 17 3.1 資料介紹與條件篩選 17 3.1.1 資料來源 17 3.1.2 資料參數過濾 17 3.2 取得訓練資料 18 3.2.1資料正規化 18 3.2.2 DBSCAN 19 3.2.3 BIRCH 19 第四章.風機健康狀況分析與比較 21 4.1 將訓練資料做為健康的基準進行分析 21 4.1.1 以高斯混合模型近似訓練資料 21 4.1.2 以高斯混合模型近似測試資料並計算CV值 23 4.1.3 自組織映射 25 4.1.4 以自組織映射近似訓練資料 25 4.1.5 SOM信心值 28 4.2 比較兩種不同信心值 30 4.2.1 中屯一號風機 30 4.2.2 彰濱工業區一號風機 31 4.3 未來趨勢預測 31 4.4 彰工與中屯風場分析 33 第五章.結論與建議 35 5.1結論 35 5.2建議 36 參考文獻 37 附表 40 附圖 41 附錄 69 | |
dc.language.iso | zh-TW | |
dc.title | 風力發電機監控平台之演算法研究 | zh_TW |
dc.title | Study on the Algorithms of the Wind Turbine Health
Monitoring Platform | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃正利,邵揮洲,林恆山,王勝堯 | |
dc.subject.keyword | 風機健康監控平台,高斯混合模型,自組織映射,信心值, | zh_TW |
dc.subject.keyword | Wind Turbine Health Monitoring Platform,Gaussian Mixture Model,Self-Organizing Map,Confidence Value, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201803665 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。