Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張麗冠(Li-Kwan Chang)
dc.contributor.authorTzu-Hao Liuen
dc.contributor.author劉子豪zh_TW
dc.date.accessioned2021-06-17T06:31:47Z-
dc.date.available2018-08-20
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationBertani, G., 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300.
Brennan, T.C., Rybchyn, M.S., Green, W., Atwa, S., Conigrave, A.D., Mason, R.S., 2009. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157, 1291-1300.
Canalis, E., Hott, M., Deloffre, P., Tsouderos, Y., Marie, P.J., 1996. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18, 517-523.
Chang, P.J., Chang, Y.S., Liu, S.T., 1998. Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72, 5128-5136.
Christenson, R.H., 1997. Biochemical markers of bone metabolism: an overview. Clin Biochem 30, 573-593.
Cianferotti, L., D'Asta, F., Brandi, M.L., 2013. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis 5, 127-139.
Cosman, F., de Beur, S.J., LeBoff, M.S., Lewiecki, E.M., Tanner, B., Randall, S., Lindsay, R., National Osteoporosis, F., 2014. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int 25, 2359-2381.
Coulombe, J., Faure, H., Robin, B., Ruat, M., 2004. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun 323, 1184-1190.
Czekanska, E.M., Stoddart, M.J., Ralphs, J.R., Richards, R.G., Hayes, J.S., 2014. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A 102, 2636-2643.
Dai, Q., Xu, Z., Ma, X., Niu, N., Zhou, S., Xie, F., Jiang, L., Wang, J., Zou, W., 2017. mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ 24, 1886-1899.
Ducy, P., Karsenty, G., 1995. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15, 1858-1869.
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G., 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754.
Dvorak-Ewell, M.M., Chen, T.H., Liang, N., Garvey, C., Liu, B., Tu, C., Chang, W., Bikle, D.D., Shoback, D.M., 2011. Osteoblast extracellular Ca2+ -sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res 26, 2935-2947.
Fakhry, M., Hamade, E., Badran, B., Buchet, R., Magne, D., 2013. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 5, 136-148.
Fromigue, O., Hay, E., Barbara, A., Marie, P.J., 2010. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem 285, 25251-25258.
Garnero, P., 2014. New developments in biological markers of bone metabolism in osteoporosis. Bone 66, 46-55.
Ghayor, C., Weber, F.E., 2016. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. Int J Mol Sci 17.
Gutierrez, S., Javed, A., Tennant, D.K., van Rees, M., Montecino, M., Stein, G.S., Stein, J.L., Lian, J.B., 2002. CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem 277, 1316-1323.
Han, Q., Yang, P., Wu, Y., Meng, S., Sui, L., Zhang, L., Yu, L., Tang, Y., Jiang, H., Xuan, D., Kaplan, D.L., Kim, S.H., Tu, Q., Chen, J., 2015. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Eng Part A 21, 2156-2165.
Hoffmann, H.M., Beumer, T.L., Rahman, S., McCabe, L.R., Banerjee, C., Aslam, F., Tiro, J.A., van Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B., 1996. Bone tissue-specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex and suppressor hox proteins that bind the OC box. J Cell Biochem 61, 310-324.
Hurtel-Lemaire, A.S., Mentaverri, R., Caudrillier, A., Cournarie, F., Wattel, A., Kamel, S., Terwilliger, E.F., Brown, E.M., Brazier, M., 2009. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284, 575-584.
Inman, C.K., 2003. The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 278, 48684-48689.
Jang, W.G., Kim, E.J., Kim, D.K., Ryoo, H.M., Lee, K.B., Kim, S.H., Choi, H.S., Koh, J.T., 2012. BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem 287, 905-915.
Javed, A., Gutierrez, S., Montecino, M., van Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B., 1999. Multiple Cbfa/AML sites in the rat osteocalcin promoter are required for basal and vitamin D-responsive transcription and contribute to chromatin organization. Mol Cell Biol 19, 7491-7500.
Jung, K., Lein, M., 2014. Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. Biochim Biophys Acta 1846, 425-438.
Kawane, T., Komori, H., Liu, W., Moriishi, T., Miyazaki, T., Mori, M., Matsuo, Y., Takada, Y., Izumi, S., Jiang, Q., Nishimura, R., Kawai, Y., Komori, T., 2014. Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J Bone Miner Res 29, 1960-1969.
Komori, T., 2010. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 658, 43-49.
Langenbach, F., Handschel, J., 2013. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4, 117.
Lee, M.H., Kim, Y.J., Kim, H.J., Park, H.D., Kang, A.R., Kyung, H.M., Sung, J.H., Wozney, J.M., Kim, H.J., Ryoo, H.M., 2003. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278, 34387-34394.
Lin, C.Y., Lin, K.J., Kao, C.Y., Chen, M.C., Lo, W.H., Yen, T.C., Chang, Y.H., Hu, Y.C., 2011. The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32, 6505-6514.
Lin, K., Xia, L., Li, H., Jiang, X., Pan, H., Xu, Y., Lu, W.W., Zhang, Z., Chang, J., 2013. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 34, 10028-10042.
Lin, M.E., Chen, T., Leaf, E.M., Speer, M.Y., Giachelli, C.M., 2015. Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice. Am J Pathol 185, 1958-1969.
Ling, M., Huang, P., Islam, S., Heruth, D.P., Li, X., Zhang, L.Q., Li, D.Y., Hu, Z., Ye, S.Q., 2017. Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase. Cell Biosci 7, 27.
Liu, D., Zhang, J., Wang, G., Liu, X., Wang, S., Yang, M., 2012. The dual-effects of LaCl(3) on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. Biol Trace Elem Res 150, 433-440.
Liu, Y.Q., Hong, Z.L., Zhan, L.B., Chu, H.Y., Zhang, X.Z., Li, G.H., 2016. Wedelolactone enhances osteoblastogenesis by regulating Wnt/beta-catenin signaling pathway but suppresses osteoclastogenesis by NF-kappaB/c-fos/NFATc1 pathway. Sci Rep 6, 32260.
Lund, A.W., Bush, J.A., Plopper, G.E., Stegemann, J.P., 2008. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J Biomed Mater Res B 87, 213-221.
Marie, P.J., 2010. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46, 571-576.
Marie, P.J., Ammann, P., Boivin, G., Rey, C., 2001. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69, 121-129.
Mentaverri, R., Yano, S., Chattopadhyay, N., Petit, L., Kifor, O., Kamel, S., Terwilliger, E.F., Brazier, M., Brown, E.M., 2006. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20, 2562-2564.
Meunier, P.J., Roux, C., Seeman, E., Ortolani, S., Badurski, J.E., Spector, T.D., Cannata, J., Balogh, A., Lemmel, E.M., Pors-Nielsen, S., Rizzoli, R., Genant, H.K., Reginster, J.Y., 2004. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350, 459-468.
Peng, S., Liu, X.S., Huang, S., Li, Z., Pan, H., Zhen, W., Luk, K.D., Guo, X.E., Lu, W.W., 2011. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone 49, 1290-1298.
Rangaswami, H., Bulbule, A., Kundu, G.C., 2006. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16, 79-87.
Reginster, J.Y., 2014. Cardiac concerns associated with strontium ranelate. Expert Opin Drug Saf 13, 1209-1213.
Riggs, B.L., 2000. The mechanisms of estrogen regulation of bone resorption. J Clin Invest 106, 1203-1204.
Rodan, G.A., 1998. Bone homeostasis. Proc Natl Acad Sci U S A 95, 13361-13362.
Rojas, A., Aguilar, R., Henriquez, B., Lian, J.B., Stein, J.L., Stein, G.S., van Wijnen, A.J., van Zundert, B., Allende, M.L., Montecino, M., 2015. Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. J Biol Chem 290, 28329-28342.
Salingcarnboriboon, R.A., Pavasant, P., Noda, M., 2010. Cbl-b enhances Runx2 protein stability and augments osteocalcin promoter activity in osteoblastic cell lines. J Cell Physiol 224, 743-747.
Schaffler, M.B., Cheung, W.Y., Majeska, R., Kennedy, O., 2014. Osteocytes: master orchestrators of bone. Calcif Tissue Int 94, 5-24.
Shin, C.S., Jeon, M.J., Yang, J.Y., Her, S.J., Kim, D., Kim, S.W., Kim, S.Y., 2006. CCAAT/enhancer-binding protein delta activates the Runx2-mediated transcription of mouse osteocalcin II promoter. J Mol Endocrinol 36, 531-546.
Stains, J.P., Lecanda, F., Towler, D.A., Civitelli, R., 2005. Heterogeneous nuclear ribonucleoprotein K represses transcription from a cytosine/thymidine-rich element in the osteocalcin promoter. Biochem J 385, 613-623.
Stephens, A.S., Stephens, S.R., Morrison, N.A., 2011. Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes 4, 410.
Tai, P.W., Wu, H., Gordon, J.A., Whitfield, T.W., Barutcu, A.R., van Wijnen, A.J., Lian, J.B., Stein, G.S., Stein, J.L., 2014. Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene 550, 1-9.
Takahashi, A., de Andres, M.C., Hashimoto, K., Itoi, E., Otero, M., Goldring, M.B., Oreffo, R.O.C., 2017. DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep 7, 7771.
Tan, S., Zhang, B., Zhu, X., Ao, P., Guo, H., Yi, W., Zhou, G.Q., 2014. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials. Biomed Res Int 2014, 814057.
Vaananen, H.K., Harkonen, P.L., 1996. Estrogen and bone metabolism. Maturitas Volume 23, Supplement, S65-69.
Vaananen, K., 2005. Mechanism of osteoclast mediated bone resorption--rationale for the design of new therapeutics. Adv Drug Deliv Rev 57, 959-971.
van Gurp, M.F., Pratap, J., Luong, M., Javed, A., Hoffmann, H., Giordano, A., Stein, J.L., Neufeld, E.J., Lian, J.B., Stein, G.S., van Wijnen, A.J., 1999. The CCAAT displacement protein/cut homeodomain protein represses osteocalcin gene transcription and forms complexes with the retinoblastoma protein-related protein p107 and cyclin A. Cancer Res 59, 5980-5988.
Verberckmoes, S.C., De Broe, M.E., D'Haese, P.C., 2003. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64, 534-543.
Viti, F., Landini, M., Mezzelani, A., Petecchia, L., Milanesi, L., Scaglione, S., 2016. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS One 11, e0148173.
W.H.O., 2003. Prevention and management of osteoporosis. World Health Organization technical report series 921, 1-164, back cover.
Wornham, D.P., Hajjawi, M.O., Orriss, I.R., Arnett, T.R., 2014. Strontium potently inhibits mineralisation in bone-forming primary rat osteoblast cultures and reduces numbers of osteoclasts in mouse marrow cultures. Osteoporos Int 25, 2477-2484.
Wu, H., Whitfield, T.W., Gordon, J.A., Dobson, J.R., Tai, P.W., van Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B., 2014. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol 15, R52.
Xiao, G., Cui, Y., Ducy, P., Karsenty, G., Franceschi, R.T., 1997. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 11, 1103-1113.
Xu, M.L., Bi, C.W.C., Liu, E.Y.L., Dong, T.T.X., Tsim, K.W.K., 2017. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor. J Biol Chem 292, 12667-12678.
Yang, J.W., Jeong, B.C., Park, J., Koh, J.T., 2017a. PHF20 positively regulates osteoblast differentiation via increasing the expression and activation of Runx2 with enrichment of H3K4me3. Sci Rep 7, 8060.
Yang, M., Arai, A., Udagawa, N., Hiraga, T., Lijuan, Z., Ito, S., Komori, T., Moriishi, T., Matsuo, K., Shimoda, K., Zahalka, A.H., Kobayashi, Y., Takahashi, N., Mizoguchi, T., 2017b. Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Sci Rep 7, 4928.
Yang, S., Xu, H., Yu, S., Cao, H., Fan, J., Ge, C., Fransceschi, R.T., Dong, H.H., Xiao, G., 2011. Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 286, 19149-19158.
Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S.I., Yano, K., Fujise, N., Sato, Y., Goto, M., Yamaguchi, K., Kuriyama, M., Kanno, T., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., 1998. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329-1337.
Yavropoulou, M.P., Yovos, J.G., 2008. Osteoclastogenesis--current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8, 204-216.
Yoo, S.H., Kim, J.G., Kim, B.S., Lee, J., Pi, S.H., Lim, H.D., Shin, H.I., Cho, E.S., You, H.K., 2016. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells. PLoS One 11, e0158481.
Yu, S., Zhu, K., Lai, Y., Zhao, Z., Fan, J., Im, H.J., Chen, D., Xiao, G., 2013. atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 9, 256-266.
Yun, H.M., Park, K.R., Quang, T.H., Oh, H., Hong, J.T., Kim, Y.C., Kim, E.C., 2015. 2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/beta-catenin pathway. Cell Death Dis 6, e1819.
Zhang, Y., Xie, R.L., Croce, C.M., Stein, J.L., Lian, J.B., van Wijnen, A.J., Stein, G.S., 2011. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 108, 9863-9868.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72258-
dc.description.abstract硫酸鈣是石膏的主要成分,可於外科醫學上作為患部固定、支撐的用途,也是重要的骨替代材料,具備生物相容性和良好的骨傳導性,在移植後不會引起發炎反應,幫助患部進行骨質新生。而在先前的研究中指出,添加鍶離子具有抗骨質疏鬆的效果,能刺激成骨前驅細胞分化成熟成成骨細胞以促進骨質新生,同時抑制蝕骨細胞進行骨質再吸收,以達到抑制骨質流失的效果,因此研究鍶離子在不同條件下對於誘導成骨細胞分化的能力就顯得相當重要,然而以往的生物測試無法同時快速、方便地檢驗鍶離子在不同條件下誘導成骨前驅細胞的效率,因此本研究的目的是要建立以冷光系統作為快速篩檢的平台,檢測並量化特定環境對於成骨細胞分化的影響。首先在成骨前驅細胞株MC3T3-E1培養時加入骨塑型蛋白和成骨誘導培養基進行成骨誘導,以西方墨點法確定成骨前驅細胞的分化上游調控蛋白質RUNX2表現量有顯著提高。然後以鹼性磷酸酶染色觀察到受到誘導的細胞有明顯變色,即開始進行分化作用,同時以成骨細胞分化的重要指標骨鈣蛋白的啟動子作為冷光報導載體的主架構,轉染進細胞並誘導分化,觀察到其在受到誘導的環境下能表現出較高的冷光讀值,確立此冷光系統具有檢測待測環境是否具有骨誘導作用的能力,並可作為鑑定該環境是否有助於成骨細胞分化的指標。接著將細胞培養在不同鍶離子濃度的環境下,可觀察到其因受到不同程度的誘導而表現冷光。在上述系統能穩定表現後,為求能在眾多不同的環境下進行測試,將上述冷光系統以慢病毒感染MC3T3-E1細胞株製作穩定細胞株,並測試此穩定細胞株是否能符合先前的誘導實驗結果,以便將來能應用在快速篩檢大量不同的骨替代材。zh_TW
dc.description.abstractCalcium sulfate is commonly used as bone graft that can fix and support bone fracture in surgical medication. Its biocompatibility and osteoconductivity allows injury-site to recover without causing inflammatory reactions after transplantation. In previous studies, the addition of strontium ions can relieve osteoporosis by stimulating maturation of preosteoblasts via RUNX2 activation, a key transcription activator of osteoblast differentiation, to promote bone regeneration. RUNX2, as an upstream regulatory protein of bone cell maturation, can upregulate the expression of downstream proteins such as osteopontin and osteocalcin, which represent the beginning of calcification among mature osteoblasts. On the other hand, strontium ions can also inhibit bone resorption through inactivating the functionality of osteoclasts. Therefore, studying the dual effect of strontium ions in medical components or bone grafts becomes important nowadays. However, it is too difficult to screen effects of strontium components or biomaterials fast, easily and quantifiably in cell culturing experiments under numerous conditions. The purpose of this study is to establish a quick screening platform through luciferase reporter system that could distinguish effects of different components and materials to preosteoblasts at the same time. First, preosteoblast MC3T3-E1 cells were induced with bone morphogenetic proteins 2 and osteogenic induction medium for bone formation, and the expression of RUNX2 was examined using immunoblotting. Moreover, the osteocalcin promoter was fused to luciferase gene to generate the reporter plasmid pGL3-OC1316 and the promoter activity can be enhanced by osteoinduction. A series deletion analysis of the reporter plasmids showed that the reporter plasmid pGL3-OC343 containing six copies of RUNX2-binding sites with strong enhancement by osteoinduction. In addition, the luciferase activities of the osteocalcin reporter plasmids were enhanced by specific concentration of strontium ions under osteoinduction. Finally, this study will use lentivirus infection to construct stable cell line by using osteocalcin reporter plasmids in MC3T3-E1 cells, which will be used to quick screen the effects of different bone grafts or biomaterials.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:31:47Z (GMT). No. of bitstreams: 1
ntu-107-R05b22036-1.pdf: 1495113 bytes, checksum: 637f59c37c5c1fddb24b6a58d833eed1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
縮寫表 V
目錄 VI
1. 前言 1
1.1 骨質疏鬆症(osteoporosis)與骨折 1
1.2 骨質的恆定與再生 1
1.3 人體內的骨質恆定 2
1.4 成骨前驅細胞與成骨細胞 3
1.5 成骨作用及生物指標基因的表現 4
1.6 RUNX2與骨鈣蛋白啟動子的活性 5
1.7 鍶與骨質疏鬆症的治療 6
研究目的 8
2. 材料與方法 11
2.1 菌種及細胞株 11
2.2 質體建構 11
2.3 質體DNA的萃取 11
2.4 基因體DNA的萃取與聚合酶連鎖反應 12
2.5 暫行性細胞轉染 12
2.6 冷光報導分析(Luciferase reporter assay) 12
2.7 西方墨點法(Western blotting) 13
2.8 細胞毒性測試 13
2.9 製備慢病毒(Lentivirus)和建立穩定細胞株 14
3. 結果 15
3.1 骨誘導作用增加生物指標基因RUNX2的表現量 15
3.2 骨誘導培養基及骨塑型蛋白質會加成活化骨鈣蛋白啟動子 16
3.3 優化骨鈣蛋白質的啟動子冷光表達系統 17
3.4 骨鈣蛋白質啟動子的冷光表達系統可偵測鍶離子對於骨誘導作用的影響 19
3.5 使用慢病毒感染系統建構穩定細胞株 19
4. 討論 21
5. 圖表 27
表 1. 質體列表 27
表 2. 引子列表 29
圖 1. 骨誘導培養基對MC3T3-E1細胞分化的影響 30
圖 2. 骨誘導培養基和骨塑型蛋白共同調控骨鈣蛋白啟動子 32
圖 3. 骨鈣蛋白啟動子刪除突變株在誘導培養基中受到活化的倍率變化 34
圖 4. 鍶離子對於MC3T3-E1細胞株的毒性測試 35
圖 5. 骨鈣蛋白啟動子冷光表達系統在不同鍶離子濃度下活化倍率的變化 37
圖 6. 以PCR及骨誘導作用檢測受到慢病毒感染的MC3T3-E1穩定細胞株 38
參考文獻 40
附錄 50
圖 S1. 成骨細胞分化路徑及生物指標表現概圖 50
圖 S2. 骨塑型蛋白2及骨誘導培養基促進成骨前驅細胞分化概圖 51
圖 S3. 骨鈣蛋白啟動子上重要的調控序列與蛋白質結合位 52
圖 S4. 骨鈣蛋白啟動子刪除突變株在大鼠細胞株ROS 17/2.8中的活性實驗 54
圖 S5. 置備帶有冷光表達系統的慢病毒,並感染MC3T3-E1細胞流程概圖 56
dc.language.isozh-TW
dc.subject硫酸鈣zh_TW
dc.subject骨替代材料zh_TW
dc.subject鍶離子zh_TW
dc.subject骨質新生zh_TW
dc.subject成骨前驅細胞MC3T3-E1zh_TW
dc.subjectRUNX2zh_TW
dc.subject骨鈣蛋白zh_TW
dc.subjectosteocalcinen
dc.subjectCalcium sulfateen
dc.subjectbone substitutesen
dc.subjectstrontiumen
dc.subjectbone formationen
dc.subjectRUNX2en
dc.subjectpreosteoblast MC3T3-E1en
dc.title利用快速篩選平台分析鍶化合物對骨細胞的影響zh_TW
dc.titleAnalysis of the effects of strontium compounds on bone cells by a quick screening platformen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡育誠,蕭超隆,段維新,賴伯亮
dc.subject.keyword硫酸鈣,骨替代材料,鍶離子,骨質新生,成骨前驅細胞MC3T3-E1,RUNX2,骨鈣蛋白,zh_TW
dc.subject.keywordCalcium sulfate,bone substitutes,strontium,bone formation,RUNX2,osteocalcin,preosteoblast MC3T3-E1,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201803794
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved