Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72255
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓(Jen-Yu Han)
dc.contributor.authorTing-Chen Chuen
dc.contributor.author朱庭蓁zh_TW
dc.date.accessioned2021-06-17T06:31:38Z-
dc.date.available2023-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAbdelhafiz, A., Riedel, B., and Niemeier, W., 2005. Towards a 3D true colored space by the fusion of laser scanner point cloud and digital photos. In ISPRS Archives - proceedings of the ISPRS Working Group V/4 “3D–ARCH 05”, Vol.36, Part 5/W17, 22–24 August, Mestre-Venice, Italy, unpaginated CD-ROM.
Albatici, R., and Tonelli, A. M., 2010. Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site. Energy and Buildings, 42(11), 2177–2183.
Albatici, R., Tonelli, A. M., and Chiogna, M., 2015. A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Applied Energy, 141(1), 218–228.
Ariwoola, R. T., Uddin, M. M., and Johnson, K. V., 2016. Use of drone for a campus building envelope study. Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana.
Balaras, C. A., and Argiriou, A. A., 2002. Infrared thermography for building diagnostics. Energy and Buildings, 34(2), 171–183.
Balletti, C., Guerra, F., Tsioukas, V., and Vernier, P., 2014. Calibration of action cameras for photogrammetric purposes, Sensors, 14(9), 17471–17490.
Barazzetti, L., Mussio, L., Remondino, F., and Scaioni, M., 2011. Targetless camera calibration. International Archives of the Photogrammetry. In ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII 5/W16, 335–342.
Cabrelles, M., Galcera, S., Navarro, S., Lerma, J. L., Akasheh, T., and Haddad, N., 2009. Integration of 3D laser scanning, photogrammetry and thermography to record architectural monuments. In Proceedings of the 22nd International Committee for Documentation of Cultural Heritage (CIPA 2009), 11–15 October, Kyoto, Japan, unpaginated CD-ROM.
Defraeye, T., Blocken, B., and Carmeliet, J., 2010. Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling. Energy Conversion and Management, 52 (1), 512–522.
DJI, 2018. MATRICE M600. URL: https://goo.gl/6c1gWz (Last date accessed: 9 July 2017).
DJI, 2018. RONIN-MX. URL: https://goo.gl/jH8egT (Last date accessed: 9 July 2017).
Ellenberg, A., Kontsos, A., Moon, F. and Bartoli, I., 2016. Bridge deck delamination identification from unmanned aerial vehicle infrared imagery. Automation in Construction, 72(2), 155–165.
EN ISO 6946, 2007. Building components and building elements. Thermal resistance and thermal transmittance Calculation method.
Evangelisti, L., Guattari, C., Gori, P., and Vollaro, R. D. L., 2015. In situ thermal transmittance measurements for investigating differences between wall models and actual building performance, Sustainability, 7(8), 10388–10398.
FLIR Systems, 2018. Introduces Multi Spectral Dynamic Imaging. URL: https://goo.gl/6Wh2zb (Last date accessed: 9 July 2017).
Grinzato, E., Cadelano, G., Bison, P., and Petracca, A., 2009. Seismic risk evaluation aided by IR thermography. In Proceedings of SPIE 7299, Thermosense XXXI, 72990C.
Haala, N., and Alshawabkeh, Y., 2006. Combining laser scanning and photogrammetry - a hybrid approach for heritage documentation. In Proceedings the 7th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage (VAST 2006), 30 October - 4 November, Nicosia, Cyprus, pp. 163–170.
Heikkila, J., and Silven, O., 1997. A four-step camera calibration procedure with implicit image correction. In Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1106–1112.
Hens, H., 2007. Building Physics–Heat, Air and Moisture, Fundamentals and Engineering Methods with Examples and Exercises, Ernst & Sohn A Wiley. ISBN 978-3-433-01841-5.
Hoegner, L., and Stilla, U., 2015. Building facade object detection from terrestrial thermal infrared image sequences combining different views. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(3), 55–62.
Hoegner, L., and Stilla, U., 2016. Automatic 3d reconstruction and texture extraction for 3d building models from thermal infrared image sequences. Proc. of QIRT’16.
Hovis, W. A., Knoll, J. S., and Smith, G. R, 1985. Aircraft measurements for calibration of an orbiting spacecraft sensor. Applied Optics, 24, 407–410.
IEA, 2013. Technology Roadmap: Energy Efficient Building Envelopes. Paris: OECD/IEA.
IPCC, 2007. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: IPCC.
iWitnessPRO, 2018. Low cost photogrammetry software system for automatic measurement. URL: https://goo.gl/2JxL67 (Last date accessed: 26 February 2017).
Kaufman, Y. J., and B. N. Holben, 1993, Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection. International Journal of Remote Sensing, 14, 21–52.
Khalil, A., 2011. Two-dimensional displacement measurement using static close range photogrammetry and a single fixed camera, Alexandria Engineering Journal, 50(3), 219-227.
Khan, H., Asif, M., and Mohammed, M., 2017. Case study of a nearly zero energy building in Italian climatic conditions, Infrastructures, 2(4), 19–26.
Khosla, R. P., and Tredwell, T. J., 1988. Solid state image sensors steadily advancing. Laser Focus/Electro-Optics, 113–118.
Kölbl., O. R., 1976. Metric or non-metric cameras. Photogrammetry Engineering and Remote Sensing. 42(1):103–113.
Maset, E., Fusiello, A., Crosilla, F., Toldo, R., and Zorzetto, D., 2017. Photogrammetric 3D building reconstruction from thermal images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W3, 25.
Mauriello, M. L., and Froehlich, J. E., 2014. Towards automated thermal profiling of buildings at scale using unmanned aerial vehicles and 3D-reconstruction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 119–122. ACM.
Nardi, I., Sfarra, S., and Ambrosini, D., 2014. Quantitative thermography for the estimation of the U-value: state of the art and a case study. In Journal of Physics: Conference Series, Vol. 547, pp. 1–8. IOP Publishing.
OpenCV dev. team, 2018. OpenCV documentation: Camera Calibration and 3D Reconstruction. URL: https://goo.gl/vBM56N (Last date accessed: 10 July 2017).
Pelagotti, A., Del Mastio, A., Uccheddu, F., and Remondino, F., 2009. Automated multispectral texture mapping of 3D models. In Proceedings of the 17th European Signal Processing Conference (EUSIPCO 2009), August, Glasgow, United Kingdom, pp. 1215–1219.
PhotoModeler, 2018. Close-range photogrammetry and image-based modeling. URL: https://goo.gl/A0C34D (Last date accessed: 26 February 2017).
Pix4Dmapper, 2018. Generate 3D models and maps, purely from images. URL: https://goo.gl/KSwZdR (Last date accessed: 9 July 2017).
Ribeiro-Gomes, K., Hernández-López, D., Ortega, J. F., Ballesteros, R., Poblete, T., and Moreno, M., A., 2017. Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV Applications in Agriculture. Sensors, 17, 2173.
Rogalski, A., 2012. Progress in focal plane array technologies. Progress in Quantum Electron, 36, 342–473.
Scribner, D. A., KRUER, M. R., and Killoany, J. M., 1991. Infrared focal plane array technology. Proceedings of the IEEE, 79(1), 66–85.
Thome, K.J., 2001. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sensing of Environment, 78, 27–38.
Thouvenel , J., 2012. Find a Modern and Quick Method to Determine the U value and the Thermal Characteristics of a Building Envelope using an IR Camera. Master of Science Thesis. KTH School of Industrial Engineering and Management. Energy Technology. Stockholm.
Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., and Bulnes, F., 2014. Infrared thermography for temperature measurement and non-destructive testing, Sensors, 14(7), 12305–12348.
Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S., and Wark, T., 2012. A mask-based approach for the geometric calibration of thermal–infrared cameras. IEEE Transactions on Instrumentation and Measurement, 61 (6), 1625–1635.
Wang, C., Cho, Y. K., and Gai, M., 2013. As-is 3D thermal modeling for existing building envelopes using a hybrid LIDAR system. Journal of Computing in Civil Engineering, 27(6), 645–656.
Wehr, A. and Lohr U., 1999. Airborne laser scanning—an introduction and overview. In ISPRS Journal of Photogrammetry & Remote Sensing, 54(2-3), 68–82.
Wolf, P. R., & Dewitt, B. A., 2000. Elements of Photogrammetry: With Applications in GIS (Vol. 3). New York: McGraw–Hill.
Yastikli, N. and Guler, E., 2013. Performance Evaluation of Thermographic Cameras for Photogrammetric Measurements. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-1/W1, ISPRS Hannover Workshop 2013, 21–24.
江渾欽、馮怡婕,2012。地籍建物三維資料流通架構建立之研究,台灣土地研究,第15卷第1期,第127–155頁。
那至中,2010。面陣列熱影像特性之研究,碩士論文,國立政治大學地政研究所,台北市。
林士淵、陳聖智,2011。政大校園多功能虛擬三維模型之精緻與精確模型數位化建置,國立政治大學校務發展計畫,國立政治大學。
陳立笙,2017。融合可見光影像與雷射掃瞄技術產製高細緻三維點雲,碩士論文,國立台灣大學土木工程研究所。
詹皇祥,2001。近景數化影像半自動式混凝土裂縫量測,碩士論文,國立中央大學土木工程研究所。
廖家翎,2014。熱影像建置數值地表溫度模型之研究,碩士論文,國立政治大學地政研究所,台北市。
謝幸宜,2009。以自率光束法提升四旋翼UAV航拍影像之空三平差精度,碩士論文,國立政治大學地政研究所,台北市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72255-
dc.description.abstract降低建物能源消耗為現今各國重要節能政策之一,而建築物外殼之熱傳透率則為評估節能效率之關鍵指標。然而目前獲取此參數之方法多採用建物於設計階段之構造大樣圖並透過已知建材之熱傳導係數進行計算,對於既有建物之真實外殼熱傳效能並無實際檢測與評估。本研究發展一套由紅外線熱影像儀與可見光相機組成的雙像感測系統,並搭載於具高機動性之無人飛行載具上,作為資料之收集平台。透過嚴謹之輻射以及幾何率定程序,確保所獲得之資料其品質足以作為後續熱傳效能分析以及整合三維空間資訊之用。此外本研究引入縮尺實驗以驗證透過熱紅外影像之數值分析進行現地量測以獲取不同建材熱傳透率之可行性,並將以上技術實地應用於建物外殼之分析。實驗成果顯示,透過本研究所提出之方法可快速將兩種型態資料完成輻射與幾何上的改正,同時輔以現地量測的環境參數以大範圍地獲取建物外殼的熱傳透率。此外,於幾何條件上將熱紅外影像與三維點雲進行物像整合以獲取同時具有高空間幾何資訊以及高正確性的熱輻射與熱傳透點雲資料,除了可提供建物熱行為更真實之視覺化展示,更能將具有數值意涵之熱點雲進行空間幾何分析。藉由以上整合兩種型態資料之完整技術,將可為建築物節能評估提供一項低成本但具有高效能與高品質且真實符合既有建物外殼熱傳效能現狀之方案。zh_TW
dc.description.abstractEnergy conservation is now considered an important issue in modern architectural design. To evaluate the energy efficiency, the thermal transmittance of building envelops is typically used as a key indicator. In this study, a drone-based platform integrating an infrared (IR) and a visible light (RBG) image sensors was developed for acquiring the data necessary for thermal transmittance analysis of building envelops. Both radiometric and geometric calibrations have been performed, ensuring its capability of acquiring information necessary for a thermal transmittance analysis and a 3D spatial information reconstruction. Furthermore, the complete approach for analyzing thermal transmittance has been developed. Experimental results revealed that the thermal efficiency of building envelops can be readily evaluated based on the data collected by the proposed system. Besides, a realistic visualization and geometrical analysis of the thermal behavior has also been achieved by the integration of 3D point cloud and IR thermal images. It gives a clear evidence that a reliable and cost-efficient solution for evaluating architectural designs for energy conservation has become available by employing the system developed in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:31:38Z (GMT). No. of bitstreams: 1
ntu-107-R05521118-1.pdf: 8060107 bytes, checksum: 5c187bf3b02f4e29b9001fce7ec14fd0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 7
第二章 文獻回顧 8
2.1 熱紅外影像資料前處理 9
2.1.1 熱紅外影像之幾何特性及率定 9
2.1.2 熱紅外影像之基礎輻射理論及率定 13
2.2 物像對應關係之建立 16
2.2.1 建物三維模型產製 17
2.2.2 整合式資料獲取系統 19
2.3 熱紅外影像溫度資訊及三維空間資訊之整合 20
2.4 小結 23
第三章 研究方法 24
3.1 熱紅外影像資料前處理 25
3.1.1 熱紅外影像之幾何率定 25
3.1.2 熱紅外影像之輻射率定 27
3.2 點雲與熱紅外影像資料對應關係之建立 31
3.2.1 外方位參數獲取以及物空間點雲建立 32
3.2.2 雙像感測系統相對方位解算 32
3.3 熱影像輔助熱傳導效能分析 35
3.4 熱資訊三維化 36
3.5 小結 38
第四章 實驗及成果分析 39
4.1 實驗配置 39
4.2 紅外線熱影像儀及可見光相機幾何率定成果 40
4.2.1 紅外線熱影像儀幾何率定成果 41
4.2.2 可見光相機幾何率定成果 44
4.3 物像對應關係建立以及雙像感測系統相對方位解算成果 45
4.3.1 物像對應關係建立成果 46
4.3.2 雙像感測系統相對方位解算成果 48
4.4 熱紅外影像輻射率定成果 50
4.4.1 紅外線熱影像儀之儀器感測率定 51
4.4.2 物件放射率率定 54
4.4.3 考量拍攝角度及物距於待測物放射率影響之成果 55
4.5 熱紅外影像輔助縮尺模型熱傳導效能分析成果 60
4.5.1 縮尺模型設計 60
4.5.2 利用熱影像輔助熱傳分析成果 61
4.5.3 HFM法及現有熱導係數計算法驗證熱傳導分析成果 64
4.6 利用熱影像輔助現地量測獲取U-value之成果 67
4.7 建物三維點雲以及物像對應關係之建立 69
4.8 建物外殼熱傳透率分級成果 72
4.9 熱資訊與三維空間資訊整合成果 75
4.10 小結 78
第五章 結論與建議 80
5.1 結論 80
5.2 未來工作建議 81
參考文獻 84
dc.language.isozh-TW
dc.subject熱傳透效能分析zh_TW
dc.subject無人飛行載具zh_TW
dc.subject紅外線熱成像zh_TW
dc.subject數值攝影測量zh_TW
dc.subject綠建築zh_TW
dc.subjectThermal Transmittance Analysisen
dc.subjectGreen Buildingen
dc.subjectDigital Photogrammetryen
dc.subjectInfrared Thermographyen
dc.subjectDroneen
dc.title以無人飛行載具及雙像感測系統輔助建物外殼熱傳效能之分析zh_TW
dc.titleDual Image Sensor Drone System for Thermal Transmittance Analysis of Building Envelopeen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智安(Tee-Ann Teo),詹瀅潔(Ying-Chieh Chan),邱式鴻(Shih-Hong Chio)
dc.subject.keyword綠建築,無人飛行載具,紅外線熱成像,數值攝影測量,熱傳透效能分析,zh_TW
dc.subject.keywordGreen Building,Drone,Infrared Thermography,Digital Photogrammetry,Thermal Transmittance Analysis,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201803741
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved