Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72233
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor伍安怡
dc.contributor.authorKa Wan Cheangen
dc.contributor.author鄭家穩zh_TW
dc.date.accessioned2021-06-17T06:30:23Z-
dc.date.available2023-09-04
dc.date.copyright2018-09-04
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAlmeras, L., Orlandi-Pradines, E., Fontaine, A., Villard, C., Boucomont, E., de Senneville, L.D., Baragatti, M., Pascual, A., Pradines, B., Corre-Catelin, N., et al. (2009). Sialome individuality between Aedes aegypti colonies. Vector borne and zoonotic diseases (Larchmont, NY) 9, 531-541.
Bizzarro, B., Barros, M.S., Maciel, C., Gueroni, D.I., Lino, C.N., Campopiano, J., Kotsyfakis, M., Amarante-Mendes, G.P., Calvo, E., Capurro, M.L., et al. (2013). Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology. Parasites & vectors 6, 329.
Boppana, V.D., Thangamani, S., Adler, A.J., and Wikel, S.K. (2009). SAAG-4 is a novel mosquito salivary protein that programmes host CD4 T cells to express IL-4. Parasite immunology 31, 287-295.
Bradley S. Schneider, S.H. (2008). The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg 102, 400-408.
Briant, L., Despres, P., Choumet, V., and Misse, D. (2014). Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology 464-465, 26-32.
Calvo, E., Mans, B.J., Andersen, J.F., and Ribeiro, J.M. (2006). Function and evolution of a mosquito salivary protein family. The Journal of biological chemistry 281, 1935-1942.
Calvo, E., Tokumasu, F., Marinotti, O., Villeval, J.L., Ribeiro, J.M., and Francischetti, I.M. (2007). Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. The Journal of biological chemistry 282, 26928-26938.
Calvo, E., Tokumasu, F., Mizurini, D.M., McPhie, P., Narum, D.L., Ribeiro, J.M., Monteiro, R.Q., and Francischetti, I.M. (2010). Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo. The FEBS journal 277, 413-427.
Carrington, L.B., and Simmons, C.P. (2014). Human to mosquito transmission of dengue viruses. Frontiers in immunology 5, 290.
Champagne, D.E., and Ribeiro, J.M. (1994). Sialokinin I and II: vasodilatory tachykinins from the yellow fever mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 91, 138-142.
Champagne, D.E., Smartt, C.T., Ribeiro, J.M., and James, A.A. (1995). The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family. Proceedings of the National Academy of Sciences of the United States of America 92, 694-698.
Chang, S.F., Huang, J.H., and Shu, P.Y. (2012). Characteristics of dengue epidemics in Taiwan. Journal of the Formosan Medical Association = Taiwan yi zhi 111, 297-299.
Chen, H.C., Hofman, F.M., Kung, J.T., Lin, Y.D., and Wu-Hsieh, B.A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81, 5518-5526.
Chen, S.T., Lin, Y.L., Huang, M.T., Wu, M.F., Cheng, S.C., Lei, H.Y., Lee, C.K., Chiou, T.W., Wong, C.H., and Hsieh, S.L. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672-676.
Chisenhall, D.M., Christofferson, R.C., McCracken, M.K., Johnson, A.M., Londono-Renteria, B., and Mores, C.N. (2014). Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasites & vectors 7, 252.
Conway, M.J., Londono-Renteria, B., Troupin, A., Watson, A.M., Klimstra, W.B., Fikrig, E., and Colpitts, T.M. (2016). Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Negl Trop Dis 10, e0004941.
Conway, M.J., Watson, A.M., Colpitts, T.M., Dragovic, S.M., Li, Z., Wang, P., Feitosa, F., Shepherd, D.T., Ryman, K.D., Klimstra, W.B., et al. (2014). Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol 88, 164-175.
Cox, J., Mota, J., Sukupolvi-Petty, S., Diamond, M.S., and Rico-Hesse, R. (2012). Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol 86, 7637-7649.
Cucunawangsih, and Lugito, N.P.H. (2017). Trends of Dengue Disease Epidemiology. Virology : research and treatment 8, 1178122x17695836.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Gettins, P.G. (2002). Serpin structure, mechanism, and function. Chemical reviews 102, 4751-4804.
Gillespie, R.D., Mbow, M.L., and Titus, R.G. (2000). The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite immunology 22, 319-331.
Gubler, D.J. (2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology 10, 100-104.
Gulley, M.M., Zhang, X., and Michel, K. (2013). The roles of serpins in mosquito immunology and physiology. Journal of insect physiology 59, 138-147.
Hogan, R.J., Gao, G., Rowe, T., Bell, P., Flieder, D., Paragas, J., Kobinger, G.P., Wivel, N.A., Crystal, R.G., Boyer, J., et al. (2004). Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol 78, 11416-11421.
Jin, L., Guo, X., Shen, C., Hao, X., Sun, P., Li, P., Xu, T., Hu, C., Rose, O., Zhou, H., et al. (2018). Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-beta receptor. Nature immunology 19, 342-353.
Johnson, A.J., and Roehrig, J.T. (1999). New mouse model for dengue virus vaccine testing. J Virol 73, 783-786.
Karst, S.M., Wobus, C.E., Lay, M., Davidson, J., and Virgin, H.W.t. (2003). STAT1-dependent innate immunity to a Norwalk-like virus. Science (New York, NY) 299, 1575-1578.
Ko, Y.C. (1989). [Epidemiology of dengue fever in Taiwan]. Gaoxiong yi xue ke xue za zhi = The Kaohsiung journal of medical sciences 5, 1-11.
Levy, D.E., and Darnell, J.E., Jr. (2002). Stats: transcriptional control and biological impact. Nature reviews Molecular cell biology 3, 651-662.
Lionel Almeras, A.F., Maya Belghazi, Ste´ phanie Bourdon,, Elodie Boucomont-Chapeaublanc, E.O.-P., Meli Baragatti,, and Nicole Corre-Catelin, P.R., Bruno Pradines, Thierry Fusai, and Christophe Rogier (2010). Salivary Gland Protein Repertoire from Aedes aegypti Mosquitoes. VECTOR-BORNE AND ZOONOTIC DISEASES 10, 391-402.
McCracken, M.K., Christofferson, R.C., Chisenhall, D.M., and Mores, C.N. (2014). Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing. J Virol 88, 1881-1889.
Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-442.
Ong, A., Sandar, M., Chen, M.I., and Sin, L.Y. (2007). Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 11, 263-267.
Orozco, S., Schmid, M.A., Parameswaran, P., Lachica, R., Henn, M.R., Beatty, R., and Harris, E. (2012). Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. The Journal of general virology 93, 2152-2157.
Peng, Z., and Simons, F.E. (2007). Advances in mosquito allergy. Curr Opin Allergy Clin Immunol 7, 350-354.
Perry, S.T., Buck, M.D., Lada, S.M., Schindler, C., and Shresta, S. (2011). STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS pathogens 7, e1001297.
Pingen, M., Bryden, S.R., Pondeville, E., Schnettler, E., Kohl, A., Merits, A., Fazakerley, J.K., Graham, G.J., and McKimmie, C.S. (2016). Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 44, 1455-1469.
Pinheiro, F.P., and Corber, S.J. (1997). Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World health statistics quarterly Rapport trimestriel de statistiques sanitaires mondiales 50, 161-169.
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature reviews Immunology 5, 375-386.
Ribeiro, J.M., Arca, B., Lombardo, F., Calvo, E., Phan, V.M., Chandra, P.K., and Wikel, S.K. (2007). An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC genomics 8, 6.
Ribeiro, J.M., and Francischetti, I.M. (2003). Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annual review of entomology 48, 73-88.
Ruckert, C., and Ebel, G.D. (2018). How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends in parasitology 34, 310-321.
Shang, C.S. (2010). The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics. 4.
Shresta, S., Sharar, K.L., Prigozhin, D.M., Snider, H.M., Beatty, P.R., and Harris, E. (2005). Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. Journal of immunology (Baltimore, Md : 1950) 175, 3946-3954.
Shyu, H.W., Lin, Y.Y., Chen, L.C., Wang, Y.F., Yeh, T.M., Su, S.J., Cheng, W.C., Chen, C.Y., Lin, K.H., and Chou, M.C. (2010). The dengue virus envelope protein induced PAI-1 gene expression via MEK/ERK pathways. Thrombosis and haemostasis 104, 1219-1227.
Smartt, C.T., Kim, A.P., Grossman, G.L., and James, A.A. (1995). The Apyrase gene of the vector mosquito, Aedes aegypti, is expressed specifically in the adult female salivary glands. Experimental parasitology 81, 239-248.
Stark, K.R., and James, A.A. (1998). Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti. The Journal of biological chemistry 273, 20802-20809.
Styer LM, L.P., Louie KL, Albright RG, Kramer LD, Bernard KA (2011). Mosquito saliva causes enhancement of West Nile virus infection in mice. JOURNAL OF VIROLOGY 85, 1517-1527.
Sumarmo, Wulur, H., Jahja, E., Gubler, D.J., Suharyono, W., and Sorensen, K. (1983). Clinical observations on virologically confirmed fatal dengue infections in Jakarta, Indonesia. Bulletin of the World Health Organization 61, 693-701.
Surasombatpattana, P., Patramool, S., Luplertlop, N., Yssel, H., and Misse, D. (2012). Aedes aegypti saliva enhances dengue virus infection of human keratinocytes by suppressing innate immune responses. The Journal of investigative dermatology 132, 2103-2105.
Thangamani, S., and Wikel, S.K. (2009). Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasit Vectors 2, 34.
Valenzuela, J.G., Pham, V.M., Garfield, M.K., Francischetti, I.M., and Ribeiro, J.M. (2002). Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect biochemistry and molecular biology 32, 1101-1122.
Velazquez, L., Fellous, M., Stark, G.R., and Pellegrini, S. (1992). A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70, 313-322.
Wan, S.W., Chen, P.W., Chen, C.Y., Lai, Y.C., Chu, Y.T., Hung, C.Y., Lee, H., Wu, H.F., Chuang, Y.C., Lin, J., et al. (2017). Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. Journal of immunology (Baltimore, Md : 1950) 199, 2834-2844.
Wang, S.F., Wang, W.H., Chang, K., Chen, Y.H., Tseng, S.P., Yen, C.H., Wu, D.C., and Chen, Y.M.A. (2016). Severe Dengue Fever Outbreak in Taiwan. The American Journal of Tropical Medicine and Hygiene 94, 193-197.
Wasinpiyamongkol, L., Patramool, S., Luplertlop, N., Surasombatpattana, P., Doucoure, S., Mouchet, F., Seveno, M., Remoue, F., Demettre, E., Brizard, J.P., et al. (2010). Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 10, 1906-1916.
Woodson, S.E., Freiberg, A.N., and Holbrook, M.R. (2013). Coagulation factors, fibrinogen and plasminogen activator inhibitor-1, are differentially regulated by yellow fever virus infection of hepatocytes. Virus research 175, 155-159.
Yen, Y.T., Chen, H.C., Lin, Y.D., Shieh, C.C., and Wu-Hsieh, B.A. (2008). Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82, 12312-12324.
Zeidner, N.S., Higgs, S., Happ, C.M., Beaty, B.J., and Miller, B.R. (1999). Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice. Parasite immunology 21, 35-44.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72233-
dc.description.abstract登革熱(DF)是一種由登革病毒所引起的急性傳染病,主要經由埃及斑蚊傳播,而具有登革出血熱(DHF)或登革休克症候群(DSS)的患者相對於登革熱(DF)患者有較高的死亡率。已有報導指出蟲媒病毒會利用蟲媒的唾液蛋白其免疫調節的特性,以提高對宿主的感染力。至於蚊子唾液以及其中的蛋白如何調節登革病毒感染宿主依然存在很多的未知。在此研究中我們發現被登革病毒感染的蚊子之唾液會促使巨噬細胞產生TNF。此外,皮內注射Stat1剔除小鼠實驗的結果指出被登革病毒感染的蚊子之唾液較未被病毒感染的蚊子之唾液會導致更顯著的出血反應,並與發炎反應的嚴重程度相關。病毒斑測試結果顯示,皮內注射登革病毒感染的蚊子之唾液的小鼠,在感染後六天可檢測出病毒血症。另外,蚊子感染登革病毒時SRPN23唾液蛋白的表現量會明顯上升,而且SRPN23也會幫助登革病毒在蚊子體內進行複製,從SRPN23靜默之蚊子感染登革病毒後七天所收集的唾液,並經過紫外線進行病毒滅活後,混合登革病毒施打Stat1剔除小鼠,相比施打登革病毒混合滅活的靜默對照組之病毒感染之蚊子唾液,在感染後三天的小鼠血清中能測到顯著較低的病毒量,同時在小鼠的腹部皮膚可測到相對較低的TNF表現量。這個研究顯示蚊子唾液與登革病毒感染宿主所產生的登革出血之嚴重程度相關,而SRPN23是其中一個調節TNF表現量和影響病毒進入血流的唾液蛋白。zh_TW
dc.description.abstractDengue virus (DENV) is transmitted to humans by Aedes aegypti mosquitoes. Arboviruses are known to take advantage of the immunomodulatory properties of mosquito salivary proteins in order to enhance their infectivity in the vertebrate hosts. However, the mechanism of how DENV infection of the mammalian host is regulated by mosquito saliva and its component(s) remains poorly understood. In this study, we discovered that saliva from DENV-infected mosquito stimulated macrophage responses by enhancing DENV-induced TNF production. Moreover, saliva from DENV-infected mosquitos induced more severe hemorrhage and inflammation in Stat1-/- mice than DENV mixed with naïve saliva. Plaque assay results showed that Stat1-/- mice inoculated with saliva from DENV-infected mosquitos had viremia on day 6 after infection whereas mice infected with DENV obtained from culture or mice infected with DENV mixed with saliva from naïve mosquitos did not. Furthermore, we discovered that the expression of mosquito salivary factor SRPN23, a serine protease inhibitor, in salivary gland was regulated by DENV infection. Interestingly, silencing SRPN23 reduced DENV replication in the mosquito. While mice given DENV mixed with saliva from UV-inactivated LacZ-silenced mosquitos had higher viral titer in the serum than mice given DENV alone on day 3, silencing SRPN23 reversed the effect. Furthermore, mice given DENV mixed with saliva from UV-inactivated SRPN23-silenced mosquitos had lower Tnf mRNA expression in the abdominal skin compared to those receiving saliva from UV-inactivated LacZ-silenced mosquitos. This study revealed that mosquito saliva increases hemorrhage severity during DENV infection in the mammalian host and showed that potentially salivary factor SRPN23 is involved in the regulation of Tnf mRNA and viral spread into the bloodstream.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:30:23Z (GMT). No. of bitstreams: 1
ntu-107-R05449014-1.pdf: 4867256 bytes, checksum: 4e75499da86113480bc3c7df78a2feb7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Table of contents v
List of figures viii
Chapter I. Introduction 1
1 Dengue virus and disease 1
2 Transmission of dengue virus 2
3 Dengue in Taiwan 3
4 Vector salivary components and those effects during infection 4
5 Dengue hemorrhage mouse model 8
Chapter II. Specific aims 10
Chapter III. Materials and methods 12
1 Materials 12
2 Methods 21
Chapter IV. Results 31
1 Mosquito saliva modulates DENV-induced macrophage cytokine responses 32
2 Saliva from DENV-infected mosquito induces more severe hemorrhage in Stat1-/- mice compared to DENV from C6/36 cell cultures mixed with naïve saliva. 32
3 Mosquito salivary factor induced by DENV infection is critical to DENV replication in Stat1-/- mice. 34
4 Comparison of cytokine and chemokine profiles in the skin of Stat1-/- mice infected with DENV with and without mosquito saliva. 34
5 SRPN23 expression in mosquito tissues and its regulation by blood-feeding and DENV infection 35
6 Silencing SRPN23 A. aegypti inhibits DENV replication in mosquitos 37
7 SRPN23 salivary factor induces viremia in Stat1-/- mice during DENV infection 38
8 The cytokines and chemokines in the skin of Stat1-/- mice are modulated by SRPN23 salivary factor 38
9 SRPN23 salivary factor induces Tnf transcript in DENV-infected Stat1-/- mouse skin 39
Chapter V. Discussion 41
1 Stat1-/- mice and dengue hemorrhage mouse model 41
2 How does DENV-induced mosquito salivary factor(s) enhance hemorrhage development? 42
3 How does SRPN23 affect DENV infection in stat1-/- mice? 43
4 Conclusions 45
Chapter VI. References 46
Chapter VII. Figures 56
dc.language.isoen
dc.subject埃及斑蚊zh_TW
dc.subject登革病毒zh_TW
dc.subject唾液zh_TW
dc.subject出血zh_TW
dc.subjectDENVen
dc.subjectAedes aegyptien
dc.subjectsalivaen
dc.subjecthemorrhageen
dc.title探討在登革病毒感染下埃及斑蚊之唾液/SRPN23唾液蛋白對免疫反應與出血反應所造成的影響zh_TW
dc.titleThe effect of Aedes aegypti saliva/SRPN23 salivary protein on immune response and hemorrhage development in DENV infectionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顧家綺,蕭信宏
dc.subject.keyword登革病毒,埃及斑蚊,唾液,出血,zh_TW
dc.subject.keywordDENV,Aedes aegypti,saliva,hemorrhage,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201803692
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved