Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康政策與管理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張睿詒
dc.contributor.authorMing-Hung Tsaien
dc.contributor.author蔡民浤zh_TW
dc.date.accessioned2021-06-17T06:30:11Z-
dc.date.available2023-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. World Health Organization Diabetes Fact Sheet; 2016.
2. 衛生福利部國民健康署. (2016, 2017/1/9). 世界糖尿病日由來與國內宣導響應. Retrieved from https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1090&pid=6426
3. 衛生福利部中央健康保險署. (2017a). 2016 年全民健康保險醫療費用前二十大疾病.
4. American Diabetes Association. Standards of medical care in diabetes. 2014. Diabetes Care 2014;37 (Suppl 1):S14–80.
5. Franco OH, Steyerberg EW, Hu FB, Mackenbach J, Nusselder W. Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch Intern Med 2007;167:1145–51.
6. Roper N, Bilous R, Kelly W, et al. Excess mortality in a population with diabetes and the impact of material deprivation: longitudinal, population based study. BMJ 2001;322:1389–93.
7. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215 –2222.
8. Lin T, Chou P, Lai MS, Tsai ST, Tai TY. Direct costs-of-illness of patients with diabetes mellitus in Taiwan. Diabetes Res Clin Pract 2001;54(Suppl 1):S43–6.
9. Cheng JS, Tsai WC, Lin CL, Chen L, Lang HC, Hsieh HM, Shin SJ, Chen T, Huang CT, Hsu CC. Trend and factors associated with healthcare use and costs in type 2 diabetes mellitus: a decade experience of a universal health insurance program. Med Care 2015;53:116–24.
10. Chang TJ, Jiang YD, Chang CH, Chung CH, Yu NC, Chuang LM. Accountability, utilization and providers for diabetes management in Taiwan, 2000–2009: an analysis of the National Health Insurance database. J Formos Med Assoc 2012;111:605–16. Taiwan yi zhi.
11. Hex N, Bartlett C, Wright D, Taylor M, Varley D. Estimating the current and future costs of type 1 and type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med 2012;29:855–862.
12. Williams R, Van Gaal L, Lucioni C. Assessing the impact of complications on the costs of Type 2 diabetes. Diabetologia 2002;45:S13-S17.
13. Liebl A, Khunti K, Orozco‐beltran D, Yale J. Health economic evaluation of Type 2 diabetes mellitus: a clinical practice focused review. Clin Med Insights Endocrinol Diabetes 2015;8:13–9.
14. Bottomley JM on behalf of T2 ARDIS Steering Group. Managing care of type 2 diabetes learnings from T2 ARDIS. Br J Diabetes Vasc Dis 2001;1: 68–72.
15. Liebl A, Neiss A, Spannheimer A, Reitberger U, Wieseler B, Stammer H et al. Complications, co‐morbidity, and blood glucose control in type 2 diabetes mellitus patients in Germany—results from the CODE‐2TM study. Exp Clin Endocrinol Diabetes 2002;110:10–16.
16. Ou HT, Chang KC, Liu YM, Wu JS. Recent trends in the use of antidiabetic medications from 2008 to 2013: a nation‐wide population‐based study from Taiwan. J Diabetes 2017; 9:256–266.
17. McGuire H, Longson H, Adler A, Farmer A. Management of type 2 diabetes in adults: summary of updated NICE guidance. BMJ 2016;353:i1575.
18. Inzucchi SE, Bergenstal RM, Buse JB. Management of hyperglycemia in type 2 diabetes: a patient‐centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35: 1364–1379.
19. Gourgari E, Wilhelm EE, Hassanzadeh H, Aroda VR, Shoulson I. A comprehensive review of the FDA‐approved labels of diabetes drugs: indications, safety, and emerging cardiovascular safety data. J Diabetes Complications 2017;31:1719–1727.
20. Smith RJ, Goldfine AB, Hiatt WR. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care 2016;39:738-742.
21. Flory JH, Ukena JK, Floyd JS. Novel anti-glycemic drugs and reduction of cardiovascular risk in diabetes: expectations realized, promises unmet. Curr Atheroscler Rep 2016;18:79.
22. Liu YM, Kao Yang YH, Hsieh CR. The determinants of the adoption of pharmaceutical innovation: evidence from Taiwan. Soc Sci Med 2011; 72:919-927.
23. Ou HT, Chen YT, Liu YM. Comparative cost-effectiveness of metformin-based dual therapies associated with risk of cardiovascular diseases among Chinese patients with type 2 diabetes: Evidence from a population-based national cohort in Taiwan. Diabetes Res Clin Pract 2016;116:14–25.
24. Sinha A, Rajan M, Hoerger T, Pogach L. Costs and consequences associated with newer medications for glycemic control in type 2 diabetes. Diabetes Care 2010;33:695–700.
25. Gottlieb LK, Salem‐Schatz S.. Anticoagulation in atrial fibrillation. Does efficacy in clinical trials translate into effectivenes in Practice. Arch Intern Med 1994;154:1945–1953.
26. Andrade SE, Walker AM, Gottlieb LK, Hollenberg NK, Testa MA, Saperia GM, Platt R. Discontinuation of antihyperlipidemic drugs—do rates reported in clinical trials reflect rates in primary care settings? New Engl J Med 1995;332(17):1125-1131.
27. Caro JJ, Ishak KJ, Huybrechts KF, et al. The impact of compliance with osteoporosis therapy on fracture rates in actual practice. Osteoporos Int 2004;15:1003–8.
28. Silverman S, Watts N, Delmas P, Lange J, Lindsay R. Effectiveness of bisphosphonates on nonvertebral and hip fractures in the first year of therapy: the risedronate and alendronate (REAL) cohort study. Osteoporos Int 2007;18(1):25-34.
29. Jenkins DJA, Wolever TMS, Jenkins AL, et al. The glycemic response to carbohydrate foods. Lancet 1984;2:388-391.
30. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2013;383:69–82.
31. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005;365(9467):1333.
32. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008;26:77–82.
33. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R. Retinopathy in diabetes. Diabetes Care 2004; 27 (Suppl. 1):s84–s87.
34. Hsiao AJ, Chen LH, Lu TH. Ten leading causes of death in Taiwan: a comparison of two grouping lists. J Formos Med Assoc 2015;114:679–680.
35. Li HY, Jiang YD, Chang CH et al. Mortality trends in patients with diabetes in Taiwan: a nationwide survey in 2000–2009. J Formos Med Assoc 2012;111:645–650.
36. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008;31:596–615.
37. American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 2013;36:1033–1046.
38. Tseng LN, Tseng YH, Jiang YD, et al. Prevalence of hypertension and dyslipidemia and their associations with micro‐ and macro‐vascular diseases in patients with diabetes in Taiwan: an analysis of nationwide data for 2000–2009. J Formos Med Assoc 2012;111(11):625–636.
39. Jonsson B. Revealing the cost of Type II diabetes in Europe. Diabetologia 2002; 45: S5–S12.
40. Mata M, Antonanzas F, Tafalla M, Sanz P. The cost of type 2 diabetes in Spain: the CODE-2 study. Gac Sanit 2002;16(6):511–520.
41. Domeikienė A, Vaivadaitė J, Ivanauskienė R, Padaiga Ž. Direct cost of patients with type 2 diabetes mellitus healthcare and its complications in Lithuania. Medicina (Kaunas). 2014;50(1):54‐60.
42. Pelletier EM, Shim B, Ben‐Joseph R, Caro JJ. Economic Outcomes Associated with Microvascular Complications of Type 2 Diabetes Mellitus: results from a US Claims Data Analysis. Pharmacoeconomics 2009; 27: 479–90.
43. Lee C, Colagiuri R, Magliano D, Cameron A, Shaw J, Zimmet P et al. The cost of diabetes in adults in Australia. Diabetes Res Clin Pract 2013; 99: 385–390.
44. Brown JB, Nichols GA, Perry A. The burden of treatment failure in type 2 diabetes. Diabetes Care 2004; 27: 1535–40.
45. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med 2013; 369: 1285–1287.
46. FDA. Guidance for industry: Diabetes mellitus. Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf. Published December 2008. Accessed June 8, 2018.
47. Bolen S, Feldman F, Vassy J, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 2007; 147: 386–399.
48. Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 2010; 303: 1410–1418.
49. Liu SC, Tu YK, Chien MN, Chien KL. Effect of antidiabetic agents added to metforminon glycaemic control, hypoglycaemia and weight change inpatients with type 2 diabetes a network meta‐analysis. Diabetes Obes Metab 2012;14:810–820.
50. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–2128.
51. Perseghin G, Solini A. The EMPA‐REG outcome study: critical appraisal and potential clinical implications. Cardiovasc Diabetol 2016;15:85
52. Pfeffer M, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med 2015;373(23):2247–57.
53. Marso SP , Daniels GH , Brown‐Frandsen K et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311–322.
54. Marso SP , Bain SC , Consoli A et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834–1844.
55. White W, Cannon C, Heller S, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013;369(14):1327–35.
56. Green J, Bethel M, Armstrong P, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015;373(3):232–42.
57. Scirica B, Bhatt D, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369(14):1317–26.
58. Home P, Pocock S, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009;373(9681):2125–35.
59. Dormandy J, Charbonnel B, Eckland DJ, Erdmann E, Massi‐Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitazone Clinical Trial In macrovascular Events): a randomised controlled trial. Lancet 2006;366:1279–1289.
60. Erdmann E, Charbonnel B, Wilcox RG et al. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 2007; 30: 2773–2778.
61. Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 2016; 374: 1321–1331.
62. Chang YC, Chuang LM, Lin JW, Chen ST, Lai MS, Chang CH. Cardiovascular risks associated with second‐line oral antidiabetic agents added to metformin in patients with type 2 diabetes: a nationwide cohort study. Diabet Med 2015;32:1460–1469.
63. Ou SM, Shih CJ, Chao PW, et al. Effects on clinical outcomes of adding dipeptidyl peptidase‐4 inhibitors versus sulfonylureas to metformin therapy in patients with type 2 diabetes mellitus. Ann Intern Med. 2015;163(9):663‐672.
64. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.
65. Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–53.
66. Phung O, Schwartzman E, Allen R, Engel S, Rajpathak S. Sulfonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30(10):1160–71.
67. Ekstrom N, Svensson AM, Miftaraj M, et al. Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in Type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes Obes Metab 2016;18:990–8.
68. Morgan C, Mukherjee J, Jenkins-Jones S, Holden S, Currie C. Combination therapy with metformin plus sulfonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.
69. Chuang LM, Tsai ST, Huang BY, Tai TY. The current state of diabetes management in Taiwan. Diabetes Res. Clin. Pract. 2001; 54 (Suppl 1): S55–65.
70. Chiang CW, Chiu HF, Chen CY, Wu HL, Yang CY. Trends in the use of oral antidiabetic drugs by outpatients in Taiwan: 1997–2003. J Clin Pharm Ther 2006; 31: 73–82.
71. Chang CH, Jiang YD, Chung CH, Ho LT, Chuang LM. National trends in anti‐diabetic treatment in Taiwan, 2000–2009. J Formos Med Asso 2012;111:617–624.
72. Chu WM, Ho HE, Huang KH, Tsan YT, Liou YS, Wang YH, Lee MC, Li YC. The prescribing trend of oral antidiabetic agents for type 2 diabetes in Taiwan: An 8-year population-based study. Medicine (Baltimore) 2017;96(43):e8257.
73. Klarenbach S, Cameron C, Singh S, Ur E. Cost‐effectiveness of second‐line antihyperglycemic therapy in patients with type 2 diabetes mellitus inadequately controlled on metformin. CMAJ 2011; 183(16): E1213–20.
74. St Charles M, Minshall ME, Pandya BJ, Baran RW, Tunis SL. A cost-effectiveness analysis of pioglitazone plus metformin compared with rosiglitazone plus metformin from a third-party payer perspective in the US. Curr Med Res Opin 2009;25:1343–1353.
75. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015.
76. American Diabetes Association. Guidelines for computer modeling of diabetes and its complications. Diabetes Care 2004;27:2262-5.
77. Weber C. Challenges in funding diabetes care: a health economic perspective. Expert Rev Pharmacoecon Outcomes Res 2010;10:517–24.
78. Govan L, Wu O, Lindsay R, Briggs A. How Do Diabetes Models Measure Up? A Review Of Diabetes Economic Models and ADA Guidelines. JHEOR 2015;3(2):132-52.
79. Gold DT, McClung B. Approaches to patient education: emphasizing the long‐term value of compliance and persistence. Am J Med 2006; 119: 325–75.
80. Motheral BR, Fairman KA. The use of claims databases for outcomes research: rationale, challenges, and strategies. Clin Ther 1997;19:346–66.
81. Eichler HG, Abadie E, Breckenridge A, et al. Bridging the efficacy‐effectiveness gap: a regulator's perspective on addressing variability of drug response. Nat Rev Drug Discov 2011; 10: 495–506.
82. Glasgow R, Lichtenstein E, Marcus A. Why don't we see more translation of health promotion research to practice? Rethinking the efficacy‐to‐effectiveness transition. Am J Public Health 2003; 93:1261–1267.
83. Sox HC, Greenfield S. Comparative effectiveness research: a report from the Institute of Medicine. Ann Intern Med 2009; 151: 203–205.
84. Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc 2005; 104: 157–163.
85. Chen HL, Hsu WW, Hsiao FY. Changes in prevalence of diabetic complications and associated healthcare costs during a 10‐year follow‐up period among a nationwide diabetic cohort. J Diabetes Complications 2015;29: 523–528.
86. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011;173:676-82.
87. Zhang Y, McCoy RZ, Mason JE, Smith SA, Shah NA, Denton BT. Second‐line agents for glycemic control for type 2 diabetes: are newer agents better? Diabetes Care 2014; 37: 1338–1345.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72229-
dc.description.abstract研究目的:
本研究評估使用二線口服降血糖藥物,對於降低糖尿病族群發生大血管病變的成本效益,並以藥品上市後之實證資料進行分析。
研究材料與方法:
本研究採回溯性世代研究,資料來源利用民國99~104年「衛生福利資料科學中心200萬人抽樣檔」。研究對象篩選出有穩定使用metformin,並且合併服用任一種糖尿病二線口服藥之第二型糖尿病患者,同時指標日期前從未發生過大血管事件者。依照用藥組合將研究對象分成五組:sulfonylureas組、acarbose組、meglitinides組、thiazolidinediones組、DPP4i組。當中,sulfonylureas組作為成本效益分析之對照組,因為sulfonylureas為過去最常見的二線藥品選擇。研究組確認後,分析患者於觀察期間內,發生重大不良大血管事件、死亡事件的發生率,同時計算各用藥組之相關醫療費用。接著將療效及費用數據套入馬可夫模型,以每年3.5%進行折舊,並進行敏感度分析。最後研究結果,得到不同用藥組合的終身成本效益。
研究結果:
研究結果顯示,模擬終生的情境下,除了metformin合併meglitinides類藥品之外,其他治療策略皆提升人年並且降低總醫療花費。也就是說,相較於metformin合併SU類藥品,metformin合併DPP4i、metformin合併thiazolidinediones、metformin合併acarbose為具有成本效益的藥物治療方案。具體來說,相較於SU組而言,使用DPP4i將增加0.94人年,並少花US$3,372元,ICER值為0.94元/LY;使用thiazolidinediones將增加2.53人年,並少花新US$2,580元,ICER值為2.35元/LY;使用acarbose將增加0.54人年,並少花US$11,283元,ICER值為0.54元/LY。敏感度分析後亦得到一致的結果。
結論與建議:
本研究提供糖尿病二線口服降血糖藥物治療的經濟實證,特別是當該決策著重於糖尿病相關之心血管併發症。在台灣目前的醫療環境下,相較於傳統治療metformin合併SU類藥品,建議使用較新推出的二線口服降血糖藥物(具體來說包含metformin合併DPP4i、metformin合併thiazolidinediones、metformin合併acarbose),對於降低大血管事件較具成本效益。研究結果顯示,因為這些二線藥物降低大血管病變的療效較好,長期模擬發現能夠提升終生的人年,並且降低終生的醫療花費,成為具備療效及成效的治療方案。不論是支付面或臨床面,採用具有成本效益的治療策略,方能減輕糖尿病所造成的疾病負擔。
zh_TW
dc.description.abstractObjective:
To evaluate the cost-effectiveness of adding relevant second-line agents to metformin for cardiovascular disease reduction in a type 2 diabetes population using post-marketing observational data.
Methods:
First, a retrospective national propensity score matched cohort was determined using the Taiwan National Health Insurance Research Database 2010-2015. Five metformin-based dual therapy groups were identified: metformin plus sulfonylureas, metformin plus acarbose, metformin plus meglitinides, metformin plus thiazolidinediones, and metformin plus DPP4 inhibitors. Metformin plus sulfonylureas was chosen as the reference group due to its conventional second-line therapy status. In our economic analysis, effectiveness measure included major adverse cardiovascular events and mortality, while cost measure considered direct medical cost. A Markov chain model was applied to project clinical and economic outcomes over a lifetime horizon, discounted at 3.5% per annum. An incremental cost-effectiveness ratio was determined. Sensitivity analysis was carried out to assess uncertainty in base-case assumptions.
Results:
In the base-case analysis, all treatments reduced costs, and all treatments except MET-MEG increased life-years. Thus MET-ALPHA, MEG-TZD, and MET-DPP4i were cost-effective compared to MET-SU. MET-ALPHA gained incremental benefits of 0.54 life-years at a cost-saving of $6,146 for an ICER of -$11,283 per LY. MET-TZD achieved incremental benefits of 2.41 life-years with a cost-saving of $2,085 for an ICER of -$8,64 per LY. MET-DPP4i achieved incremental benefits of 0.94 life-years at a cost-savings of $3,161 for an ICER of -$3,372 per LY. Results were consistent across a range of sensitivity analyses.
Conclusion:
This study provided empirical economic evidence to inform the choice of second-line agents, especially when CVD is considered important. Under present conditions in Taiwan, we would give preference to adding novel second-line agents to metformin for those who fail monotherapy, as compared to conventional MET–SU therapy. Antidiabetic drugs with superior cardiovascular profiles (such as DPP4 inhibitors, thiazolidinediones, and alpha-glucosidase inhibitors) demonstrate modest life-year gains and lower costs over time. We anticipate an appropriate use of these cost-effective treatment options will help payers and physicians mitigate the growing burden of diabetes.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:30:11Z (GMT). No. of bitstreams: 1
ntu-107-R05848022-1.pdf: 1312483 bytes, checksum: eb51c0fffa8c1569612a801a0bca5c36 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract ii
Chapter 1 – Introduction 1
1.1 Study context 1
1.2 Objective 4
Chapter 2 – Literature Review 5
2.1 Burden of diabetes 5
2.2 State of diabetes drug therapy 18
2.3 Approach to cost-effectiveness analysis 46
Chapter 3 – Methodology 56
3.1 Study design 56
3.2 Data source 58
3.3 Study population 59
3.4 Outcome of interest 64
3.5 Analytical approach 66
Chapter 4 – Results 71
4.1 Baseline of study groups 71
4.2 Primary analysis 74
Chapter 5 – Discussion 82
Chapter 6 – Conclusion 88
Reference 89
Appendix – Operational definition of variables 101
dc.language.isoen
dc.title使用糖尿病之二線口服降血糖藥對於降低大血管病變之成本效益分析zh_TW
dc.titleCost-effectiveness of second-line agents added to metformin for cardiovascular risk reductionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭斐元,呂銘洋
dc.subject.keyword二線口服降血糖藥,重大不良心血管事件,成本效益,馬可夫模型,真實世界資料,zh_TW
dc.subject.keywordSecond-line oral hypoglycemic agents (OHAs),Major adverse cardiovascular events,Cost-effectiveness,Markov model,Real-word data,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201803713
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept健康政策與管理研究所zh_TW
顯示於系所單位:健康政策與管理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved