Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡進發(Jing-Fa Tsai)
dc.contributor.authorRuei-Sin Hongen
dc.contributor.author洪瑞昕zh_TW
dc.date.accessioned2021-06-17T06:30:04Z-
dc.date.available2022-10-01
dc.date.copyright2020-10-26
dc.date.issued2020
dc.date.submitted2020-10-14
dc.identifier.citation[1] W. S. McCulloch and W. Pitts, 'A logical calculus of the ideas immanent in nervous activity,' The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 'Gradient-based learning applied to document recognition,' Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[3] S. Hochreiter and J. Schmidhuber, 'Long short-term memory,' Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[4] M. Schuster and K. K. Paliwal, 'Bidirectional recurrent neural networks,' IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.M. Ester,
[5] A. M. Update, 'Global wind report,' Global Wind Energy Council, 2017
[6] '2016能源產業技術白皮書'經濟部能源局, 2016年9月.
[7] 台灣再生能源發展概況;Available from: https://www.taipower.com.tw/tc/page.aspx?mid=204 cid=1581 cchk=82fb957e-2fe8-49b6-90a9-b750387de936
[8] N. Veritas, Guidelines for design of wind turbines. Det Norske Veritas: Wind Energy Department, Ris ̜National Laboratory, 2002.
[9] W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, 'Wind turbine condition monitoring: technical and commercial challenges,' Wind Energy, vol. 17, no. 5, pp. 673-693, 2014.
[10] O. Uluyol, G. Parthasarathy, W. Foslien, and K. Kim, 'Power curve analytic for wind turbine performance monitoring and prognostics,' in Annual conference of the prognostics and health management society, 2011, vol. 2, pp. 1-8.
[11] Y. Wang, Z. Zhu, H. Song, and K. Shi, 'Wind turbine gearbox condition monitoring based on extreme gradient boosting,' in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, 2017: IEEE, pp. 6017-6023.
[12] 楊其昌, '高斯混合模型在風機預兆式健康管理上的應用研究,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-95, 2016.
[13] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, 'YOLOv4: Optimal Speed and Accuracy of Object Detection,' arXiv preprint arXiv:2004.10934, 2020.
[14] H. Liu, X.-w. Mi, and Y.-f. Li, 'Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network,' Energy conversion and management, vol. 156, pp. 498-514, 2018.
[15] D. Silver et al., 'Mastering the game of go without human knowledge,' Nature, vol. 550, no. 7676, pp. 354-359, 2017.
[16] 詹勳智, '類神經網路在風機預兆式健康管理上的應用研究,' 2016.
[17] A. Zaher, S. McArthur, D. Infield, and Y. Patel, 'Online wind turbine fault detection through automated SCADA data analysis,' Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 12, no. 6, pp. 574-593, 2009.
[18] Z. Kong, B. Tang, L. Deng, W. Liu, and Y. Han, 'Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units,' Renewable Energy, vol. 146, pp. 760-768, 2020.
[19] 周資穎, '應用同儕比較偵測風機異常之研究,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-123, 2019.
[20] T. Zhang, R. Ramakrishnan, and M. Livny, 'BIRCH: an efficient data clustering method for very large databases,' ACM Sigmod Record, vol. 25, no. 2, pp. 103-114, 1996.
[21] H.-P. Kriegel, J. Sander, and X. Xu, 'A density-based algorithm for discovering clusters in large spatial databases with noise,' in Kdd, 1996, vol. 96, no. 34, pp. 226-231.
[22] W. S. McCulloch and W. Pitts, 'A logical calculus of the ideas immanent in nervous activity,' The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
[23] Martin T. Hagan, Howard B. Demuth, Mark Beale. Neural Network Design vol. 20: PWS publishing company Boston, 1996.
[24] V. Nair and G. E. Hinton, 'Rectified linear units improve restricted boltzmann machines,' in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 807-814.
[25] K. He, X. Zhang, S. Ren, and J. Sun, 'Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,' in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
[26] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, 'Fast and accurate deep network learning by exponential linear units (elus),' arXiv preprint arXiv:1511.07289, 2015.
[27] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
[28] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014.
[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 'Learning representations by back-propagating errors,' nature, vol. 323, no. 6088, pp. 533-536, 1986.
[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 'Learning internal representations by error propagation,' California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
[31] K. Pearson, 'LIII. On lines and planes of closest fit to systems of points in space,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559-572, 1901.
[32] H. Hotelling, 'Analysis of a complex of statistical variables into principal components,' Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.
[33] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley Sons, 2015.
[34] R. J. Hyndman and Y. Khandakar, Automatic time series for forecasting: the forecast package for R (no. 6/07). Monash University, Department of Econometrics and Business Statistics, 2007.
[35] Vestas V80/2000規格;Available from: https://www.thewindpower.net/turbine_en_30_vestas_v80-2000.php
[36] 台電對風機的統計資料;Available from: https://www.taipower.com.tw/TC/search.aspx?q=%e5%90%84%e9%a2%a8%e6%a9%9f%e7%99%bc%e9%9b%bb%e9%87%8f%e3%80%81%e7%99%bc%e9%9b%bb%e6%99%82%e6%95%b8%e7%b5%b1%e8%a8%88%e8%a1%a8
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72227-
dc.description.abstract本研究分別使用前饋式神經網路[1]、捲積神經網路[2]、長短期記憶神經網路[3]及雙向長短期記憶神網路[4]建立健康狀況診斷演算法,比較這些神經網路並討論這四種神經網路的優劣。再以最佳神經網路尋找適當的神經元數與隱藏層數,建立健康狀況診斷演算法,經比較後採用雙向長短期記憶神經網路(Bidirectional Long Short-Term Memory Neural Networks)建立風機部件健康診斷演算法,並以輸出值與實際值之誤差,定義部件健康指標。最後再以整合移動平均自迴歸模型(Autoregressive Integrated Moving Average Model)所預測之信賴區間設定閾值,以建立故障警訊之標準。
以麥寮12號風機、彰濱工業區2號風機與麥寮11號風機為研究對象,並利用其運作資料與故障維修紀錄分別建立發電機、齒輪箱與液壓系統之風機部件的維護預警系統。經分析後可在至少三天前提出預警。
zh_TW
dc.description.abstractIn this study, the feedforward neural networks [1], convolutional neural networks [2], long-short-term memory neural networks [3] and bidirectional long-short-term memory neural networks [4] were used to establish the health diagnosis algorithms of wind turbine. The used neural networks were compared with their advantages. Then the best neural networks was used to find the appropriate number of neurons and hidden layers, and to establish a health diagnosis algorithm. The Bidirectional Long Short-Term Memory Neural Networks was selected to establish the health diagnosis model for wind turbine component after comparisons. The component health indicators were defined based on the difference between the model output value and the actual value. Finally, the threshold value was set by the confidence interval predicted by the Autoregressive Integrated Moving Average Model to establish the standard of fault warning.
The validation examples include Mai-Liao No. 12 wind turbine、Chang-Kong No. 2 wind turbine and Mai-Liao No. 11 wind turbine. The SCADA data and the fault maintenance records were used to establish the early warning system for the generators 、 gearboxes and hydraulic system of the wind turbine, respectively. The validation results show that the early warning can be issued at least three days ago.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:30:04Z (GMT). No. of bitstreams: 1
U0001-1609202016192000.pdf: 4462479 bytes, checksum: 0bc11302022941ed760b8c08bc379c6b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 I
ABSTRACT II
圖目錄 VI
表目錄 XI
第一章、緒論 1
1-1研究背景與研究動機 1
1-2文獻回顧 2
1-2-1 風機資料探勘 2
1-2-2神經網路在各領域上之應用 3
1-2-3風機故障檢測 3
1-3研究內容 4
1-4論文架構 5
第二章、使用方法及原理 6
2-1 利用層次方法的平衡疊代規約和分群演算法 6
2-2 密度分群演算法 8
2-3神經網路 9
2-3-1神經元結構 9
2-3-2激勵函數 10
2-3-3神經網路基本架構 11
2-3-4損失函數 11
2-3-5神經網路訓練 12
2-3-5-1梯度最佳化演算法 12
2-3-5-2 反向傳遞演算法 13
2-3-6 捲積神經網路 15
2-3-7長短期記憶神經網路 16
2-3-8雙向長短期記憶神經網路 18
2-4主成分分析 18
2-5整合移動平均自迴歸模型 21
2-5-1 最佳化參數挑選 23
2-5-2 未來預測 24
第三章、資料介紹與前處理 25
3-1維修紀錄 25
3-2使用資料 25
3-3資料之變數選擇 25
3-4資料前處理 26
3-4-1全體資料前處理 26
3-4-2訓練資料前處理 27
第四章、風機部件之健康狀況診斷演算法之研究 29
4-1神經網路架構實驗 29
4-1-1驗證神經網路擬合度 29
4-1-2神經網路種類實驗 30
4-1-3隱藏層神經元數目實驗 30
4-1-4隱藏層層數實驗 31
4-2建立健康狀況診斷演算法 31
4-3健康狀況指標 32
4-4健康狀況診斷 32
4-4-1健康狀況診斷──齒輪箱 32
4-4-2健康狀況診斷──發電機 33
4-4-3健康狀況診斷──液壓系統 33
第五章、故障警訊演算法之研究 34
5-1 故障警訊架構 34
5-2 以PCA降維 34
5-3 ARIMA模型建立 35
5-4 ARIMA預測及其信賴區間 35
5-5故障警訊 35
第六章、結論與建議 37
6-1 結論 37
6-2 建議 37
參考文獻 39
附圖 43
附表 83
dc.language.isozh-TW
dc.title應用雙向長短期記憶神經網路於異常風機部件之研究zh_TW
dc.titleStudy on Applying the Bidirectional Long Short-Term Memory Neural Networks to Detect the Abnormal Wind Turbine Componenten
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張瑞益(Rat-I Chang),林恆山(Hen-Shan Lin),劉全梤(Chuan-Fen Liu)
dc.subject.keyword風力發電機,雙向長短期記憶神經網路,差分整合移動平均自迴歸模型,健康狀況診斷,故障警訊,zh_TW
dc.subject.keywordWind Turbine,Bidirectional Long Short-Term Memory Neural Networks,Differential Integrated Moving Average Autoregressive Model,Health Diagnosis,Fault Warning,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202004213
dc.rights.note有償授權
dc.date.accepted2020-10-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1609202016192000.pdf
  目前未授權公開取用
4.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved