請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7221完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一 | |
| dc.contributor.author | Yu-Ching Cheng | en |
| dc.contributor.author | 鄭宇晴 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:20Z | - |
| dc.date.available | 2024-08-19 | |
| dc.date.available | 2021-05-19T17:40:20Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-11 | |
| dc.identifier.citation | 中華民國物流協會。2005。稻米(非有機)良好農業規範TGAP-生產履歷制度。中華民國物流協會編印。台北市。台灣。
朱月珍。1982。土壤中六價格的吸附與還原。中國環境化學1(5):359-364頁。 伍光和、王乃昂、胡雙熙,田連恕、張建明。2007自然地理学。高等教育出版社。 李家興。2011。可溶性有機碳對兩種土壤吸脫附銅鋅鎘之影響。國立臺灣大學生物資源暨農學院農業化學系博士論文。 林宜諄。2013。走進稻香的世界 - 稻米小學堂。行政院農業委員會農糧署。 倪禮豐。2014。生物炭在農業上之利用。豐年雜誌。64 (19)。 張如燕。1989。銅、鋅、鎘、鉛在受污染土體中之移動性及在土壤各組成分中之分佈。國立臺灣大學農業化學研究所碩士論文。 郭魁士。1992。土壤學。270-271頁。中國書局。 陳鴻堂。2001。土壤與作物的鋅元素。台中區農業改良場八十九年度試驗研究暨推廣學術研討會報告摘要-特刊第49號。 許正一。2011,12月。土壤重金屬知多少。科學發展468:54-59頁。 許正一、蔡衡。2011。蛇紋岩土壤之特性及其重金屬含量偏高問題。臺灣礦業63(1): 12-26頁。 陳亞東、梁成華、王延松、李月瑶、郭寶東、張永红。2010。氧化還原條件對濕地土壤磷吸附與解吸特性的影響。生態學雜誌。29(4): 724-729頁。 程淑芬、劉仁煜。2003。污染場址中不同粒徑土壤對重金屬吸附特性之研究。第一屆環工學會土壤與地下水技術研討會論文集。 黄倩、吳靖霆、陳杰、蔡武、王昊、陳書、何云峰。2015。土壤吸附可溶性有機碳研究進展。土壤47(3): 446–452頁。 蔡佳儒、吳耿東。2016。臺灣農業廢棄物製備生物炭之未來與展望。農業生技產業季刊46: 24-28頁。 Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99: 19–33. Ahmad, M., S. S. Lee, S. E. Lee, M. I. Al-Wabel, D. C. Tsang, and Y. S. Ok. 2017. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soils Sediments. 17: 717–730. Alloway, B. J. 1995. Heavy Metal in Soils. 2nd ed. John Wiley & Sons. New York. Alloway, B. J. 2013. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (3rd ed). Springer, Netherlands, pp. 53-75, 313–327. Antoniadis, V., E. Levizou, S. M. Shaheen, Y. S. Ok, A. Sebastian, C. Baum, M. N. Prasad, W. W. Wenzel, and J. Rinklebe. 2017. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth Sci. Rev. 171: 621–645. Awad Y. M., Y. S. Ok, J. Abrigata, J. Beiyuan, F. Beckers, D.C. Tsang, and J. Rinklebe. 2018. Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Sci Total Environ. 625:147–154. Bartlett, R. J. 1991. Oxidation–reduction status of aerobic soils. In: Chemistry in the soil environment. Wiley and Sons, New York, pp. 90–94. Beiyuan, J., Y. M. Awad, F. Beckers, D. C. W. Tsang, Y. S. Ok, and J. Rinklebe. 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178: 110-118. Borch, T., R. Kretzschmar., A. Kappler., P. V. Cappellen., M. Ginder-Vogel., A. Voegelin., and K. Campbell. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44: 15–23. Brown P. H., L. Dunemann, R. Schulz., and H. Marschner. 1989. Influence of redox potential and plant species on the uptake praveen of nickel and cadmium from soils. Pflanzenernahr Bodenk. 152: 85–91. Chaney, R. L. 1983. Potential effects of waste constituents on the food chain. Land Treatment of Hazardous Wastes, NoyesData Corporation, Park Ridge, New Jersey, pp. 50-76. Chen, X. C., G. C. Chen, L. G. Chen, Y. X. Chen, J. Lehmann, M. B. McBride, and A. G. Hay. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 102: 8877–8884 Cheng, C. H., and J. Lehmann. 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75: 1021–1027. Choppala, G., N. Bolan, A. Kunhikrishnan, and R. Bush. 2016. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381. DeAngelis, K. M., W. L., Silver, A. W. Thompson, and M. K. Firestone. 2010. Microbial communities acclimate to recurring changesin soil redox potential status. Environ. Microbiol. 12(12): 3137-3149. Du Laing, G., J. Rinklebe, B. Vandecasteele, E. Meers, and F. M. Tack. 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci. Total Environ. 407: 3972-3985. Du Laing, G., D. R. J. Vanthuyne, B. Vandecasteele, F. M. G. Tack, and M. G. Verloo. 2007. Influence of hydrological regime on pore water metal concentrations in a contaminated sedimentderived soil. Environ Pollut. 147: 615–625. El-Naggar, A., S. M. Shaheen, Y. S. Ok, J. Rinklebe. 2018. Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potentialmobility in a mining soil under dynamic redox-conditions. Sci. Total Environ. 624:1059–1071. Elzobair K. A., M. E. Stromberger, J. A. Ippolito, and R. D. Lentz. 2016. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142:145–152. Frohne, T., J. Rinklebe, and R. A. Diaz-Bone. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil Sediment. Contam. 23: 779-799. Guo, H., D. Zhang, D. Wen, Y. Wu, P. Ni, Y. Jiang, Q. Guo, F. Li, H. Zheng, and Y. Zhou. 2014. Arsenic mobilization in aquifers of the southwest songnen basin, P.R. China: evidences from chemical and isotopic characteristics. Sci. Total Environ. 490: 590–602. Huang, Y.Z., X. W. Hao, M. Lei, and B. Q. Tie. 2013. The remediation technology and remediation practice of heavy metals-contaminated soil. J. Agro-Environ. Sci. 32: 409–417. Igalavithana, A. D., S. E. Lee, Y. H. Lee, D. C. W. Tsang, J. Rinklebe, E. E. Kwon, Y. S. Ok. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174: 593-603. Imai, Q., and E. F. Gloyna. 1990. Effects of pH and oxidation state of chromium on the behavior of chromium in the activated sludge process. Water Res. 24: 1443–1450. Jansen, B., K. G. J. Nierop, and J. M. Verstraten. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe(II), Fe(III) and Al(III) in soil solutions determined by diffusive gradients in thin films. Anal Chim Acta. 454: 259–270. Kabata-Pendias, A. 1993. Behavioural properties of traces metals in soils. Appl. Geochem. 2:3-9. Kabata-Pendias, A. 2011. Trace elements in soils and plants (4th ed). CRC Press, Boca Raton, London, New York, pp. 181-189, 237-245, 253-267, 275-286. Kalbitz, K., S. Solinger, J. H. Park, B. Michalzik, and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soil: a review. Soil Sci. 165: 277–304. Kim, J. G., and J. B. Dixon. 2002. Oxidation and fate of chromium in soils. Soil Sci. Plant Nutr. 48: 483–490. Kim, H. S., K. R. Kim, J. E. Yang, Y. S. Ok, G. Owens, T. Nehls, G. Wessolek, and K. H. Kim. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142: 153–159. Khodadad, C. L. M., A. R., Zimmerman, S. J. Green, S. Uthandi, and J. S. Foster. 2011. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol. Biochem. 43(2): 385-392. Lindsay, W. L. 1979. Chemical equilibria in soils. New York: John Wiley and Sons. Lu, K., X. Yang, G. Gielen, N. Bolan, Y. S. Ok, N. K. Niazi, S. Xu, G. Yuan, X. Chen, X. Zhang, and D. Liu. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 186: 285–292. Mattigod, S. V., G. Sposito, and A. L. Page. 1981. Factors affecting the solubilities of trace metals in soils. pp.203-222. Ma, Y., and P. S. Hooda. 2010. Chromium, nickel and cobalt. In: Hooda, P.S. (Ed.), Trace Elements in Soils, first ed. John Wiley & Sons Ltd, PO19 8SQ, UK, pp. 461-480. McKenzie, R. M. 1977. Manganese oxides and hydroxides: in Minerals in Soil Environments. Soil Sci. Soc. Am. J. 181-193. Negra, C., D. S. Ross, and A. Lanzirotti. 2005. Oxidizing behavior of soil manganese: interactions among abundance, oxidation state, and pH. Soil Sci. Soc. Am. J. 69: 87–95. Neubauer, S. C., K. Givler, S. K. Valentine, and J. P. Megonigal. 2005. Seasonal patterns and plant‐mediated controls of subsurface wetland biogeochemistry. Ecology. 86: 3334–3344. Niazi, N.K., I. Bibi, M. Shahid, Y.S. Ok, E.D. Burtonc, H. Wang, S.M. Shaheen, J. Rinklebe, and A. Lüttge. 2018. Arsenic sorption to perilla leaf biochar in aqueous environments: an advanced spectroscopic and microscopic examination. Environ. Pollut. 232: 31–41. Palmer, C. D., and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect. 92: 25-40. Pan, G., and L. Li. 2013. The remediation technology for metal contaminated soil. China Rural Sci. Technol. 40–41. Qi, F., D. Lamb, R. Naidu, N. S. Bolan, Y. Yan, Y. S. Ok, M. M. Rahman, and G. Choppala. 2018. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci. Total Environ. 610–611: 1457–1466. Rai, D., B. M. Sass, and D. A. Moore. 1987. Chromium (Ⅲ) hydrolysis constants and solubility of Chromium (Ⅲ) hydroxide. Inorg. Chem. 26:345-349. Rauret, G., J. F. Lo´pez-Sa´nchez, and A. Sahuquillo. 1999. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1: 57–61. Rinklebe, J., S. Antić-Mladenović, T. Frohne, H. J. Staerk, Z. Tomić, and V. Ličina. 2016a. Nickel in a serpentine-enriched Fluvisol: redox affected dynamics and binding forms. Geoderma 263: 203-214. Rinklebe, J., and S. M. Shaheen, and K. Yu. 2016b. Release of As, Ba, Cd, Cu, Pb and Sr under pre-defined redox potentials in different rice paddy soils originating from the U.S.A. and Asia. Geoderma 270. 21-32. Rinklebe, J., S. Antić-Mladenović, T. Frohne, H. J. Stärk, Z. Tomić, and V. Ličina. 2016c. Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma 263: 203–214. Rinklebe, J., S. M. Shaheen, and T. Frohne. 2016d. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142: 41–47. Rinklebe, J., and S. M. Shaheen. 2017a. Redox chemistry of nickel in soils and sediments: A review. Chemosphere 179: 265-278. Rinklebe, J., J. Kumpiene, G. Du Laing, and Y. S. Ok. 2017b. Biogeochemistry of trace elements in the environment – editorial to the special issue. J. Environ. Manag. 186: 127–130. Sarkar, S. K., P. Mondal, J. K. Biswas, E. E. Kwon, Y. S. Ok, and J. Rinklebe. 2017. Trace elements in surface sediments of the Hooghly (Ganges) estuary: distribution and contamination risk assessment. Environ. Geochem. Health. 1–14. Schmidt, R. L. 1984. Thermodynamic properties and environmental chemistry of chromium. Battelle Pacific Northwest Laboratory Report, PNL-4481, Richland, WA. Sherene, T. 2010. Mobility and transport of heavy metals in polluted soil environment. Biological forum—an international journal 2 (2): 112-121. Shaheen, S. M., J. Rinklebe, H. Rupp, and R. Meissner. 2014. Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters. Environ. Pollut. 191:223-231. Shaheen, S. M., T. Frohne, J. R. White, R. D. DeLaune, and J. Rinklebe. 2017. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. J. Environ. Manage. 186: 131-140. Silveira, M. L., L. R. F. Alleoni, G. A. O’Connor, and A.C. Chang. 2006. Heavy metal sequential extraction methods—A modification for tropical soils. Chemosphere 64: 1929–1938. Sutherland, R. A. and F. M. G. Tack. 2003. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Adv. Environ. Res. 8:37-50. Tack, F. M. G., E. Van Ranst, C. Lievens, and R. E. Vandenberghe. 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: the role of hydrous oxides of Fe and Mn. Geoderma 137: 83-89. Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-851. Tong, X.J., J. Y. Li, J. H. Yuan, and R. K. Xu. 2011. Adsorption of Cu (II) by biochars generated from three crop straws. Chem. Eng. J. 172: 828–834. Uren, N.C., 1992. Forms, reaction, and availability of nickel in soils. Adv. Agron. 48: 141-203. US Environmental Protection Agency, 1974. Safe Drinking Water Act, Fact Sheet. Available from: <http://www.ehso. com/ehso3.php?URL=http%3A%2F%2Fww w.epa.gov/safewater/contaminants/dw_contamfs/chromium.html>. Wang X., D. Song, G. Liang, Q. Zhang, C. Ai, and W. Zhou. 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl Soil Ecol. 96:265–272. Weaver, R. M., and M. F. Hochella. 2003. The reactivity of seven Mn-oxides with Cr-aq(3+): a comparative analysis of a complex, aq environmentally important redox reaction. Am. Mineral. 88: 2016–2027. Wittbrodt, T., and C. D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29: 1–25. Xie Y., J. Fan, W. Zhu, E. Amombo, Y. Lou, L. Chen, and J. Fu. 2016. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 7: 1–12. Xu Y., B. Seshadri, B. Sarkar, H. Wang, C. Rumpel, D. Sparks, M. Farrell, T. Hall, X. Yang, and N. Bolan. 2018. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci Total Environ. 621:148–159. Yavitt, J. B., and T. J. Fahey. 1984. An experimental analysis of solution chemistry in a lodgepole pine forest floor. Oikos. 43:222-234. Yin, D. X., X. Wang, C. Chen, B. Peng, C. Y. Tan, and H. L. Li. 2016. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152: 196–206. Yu, K., F. Bohme, J. Rinklebe, H. U. Neue, and R. D. DeLaune. 2007. Major biogeochemical processes in soils – a microcosm incubation from reducing to oxidizing conditions. Soil Sci. Soc. Am. J. 71: 1406–1417. Yu, K., and J. Rinklebe. 2011. Advancement in soil microcosm apparatus for biogeochemical research. Ecol. Eng. 37: 2071-2075. Yuan, J. H., R. K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102: 3488–3497. Yuan, Y., N. Bolan, A. Prévoteau, M. Vithanage, J. K. Biswas, Y. S. Ok, and H. Wang. 2017. Applications of biochar in redox-midiated reactions. Bioresour. Technol. 246: 271-281. Zachara, J. M., C. C. Ainsworth, C. E. Cowan, and C. T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53: 418–428. Zhang, M. K., Z. Y. Liu, and H. Wang. 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 41:7. 820-831. Zhang, W., S. Mao, H. Chen, L. Huang, and R. Qiu. 2013. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 147: 545–552. Zhou, Y. M., B. Gao, A .R. Zimmerman, J. Fang, Y. N. Sun, and X. D. Cao. 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J. 231: 512–518. Zhao, F. J., Y. Ma, Y. G. Zhu, Z. Tang, and S. P. McGrath. 2014. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Techno. 49 (2): 750–759. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7221 | - |
| dc.description.abstract | 汙染土壤中的潛在有毒元素(Potentially toxic elements, PTEs),例如鉻、鎳、銅和鋅等重金屬,可能會透過淋洗或氧化還原作用從土壤固相中釋出,進一步地被植物吸收或滲入至地下水體中,影響到作物安全性以及人體健康,尤其是被PTEs汙染的水稻田土壤。生物炭可用來改善PTEs汙染土壤,但氧化還原循環對PTEs釋出的知識仍不充足,因此,本研究藉由模擬浸水土壤的氧化還原變化,探討施用稻殼生物炭時,生物地球化學因子對鉻、鎳、銅、鋅溶解度之影響。研究目的為: (1)量化預設氧化還原條件下,生物炭的添加對供試土壤鉻、鎳、銅、鋅溶解度之影響,(2)了解5%生物炭的添加及氧化還原電位(Eh)和其他因子,包括pH值、可溶性有機碳(Dissolved organic carbon, DOC)、專一性紫外光吸收度(Specific ultraviolet absorbance, SUVA254 nm)、Fe、Mn、Cl-、PO43-和SO42-等如何對動態氧化還原條件下重金屬從土壤固相釋出產生影響。供試汙染土壤採自彰化縣和美系20公分表土,實驗分為供試土壤處理組(S)和試驗土壤-稻殼生物炭處理組(S+BC),以土水比1:8在微系統反應槽(microcosm)進行孵育實驗,生物炭處理組(S+BC)額外添加5%的稻殼生物炭,並控制氧化還原電位從250 mV還原至-200 mV,再氧化至250 mV,供試土壤處理組(S)和生物炭處理組(S+BC)孵育時間分別為35天及48天。在預設氧化還原電位平衡24小時候,收集不同氧化還原電位之土壤溶液樣品,經離心後,在通氮操作檯中進行過濾,並測定濾液中PTEs、可溶性有機碳(DOC)、陰離子濃度及專一性紫外光吸收度(SUVA 254 nm)。研究結果顯示,在兩種處理土壤中,土壤pH值和氧化還原電位兩者呈負相關,推測主要受到錳(氫)氧化物釋出及微生物活動有關,DOC和PTEs間存在顯著正相關性,表示金屬可能會因為DOC的溶解釋出而增加其溶解度。陰離子濃度大多隨反應時間的增加而增加,且陰離子可能會和金屬離子反應生成可溶性錯合物,間接增加金屬溶解度。本研究結果為系統性改變Eh,會促進兩種處理土壤中溶解態Cr、Ni、Cu、Zn、Fe及陰離子的釋放,添加5%生物炭後,液相重金屬的溶解度大幅增加,主要是因為可溶性有機碳會和金屬形成可溶的錯合物,因此,在供試土壤中施用5%稻殼生物炭可能會釋出較多的重金屬。 | zh_TW |
| dc.description.abstract | Soil contamination with potentially toxic elements (PTEs) in Taiwan is still a noteworthy environmental issue, such as chromium, nickel, copper, and zinc. These PTEs may be absorbed by plants or infiltrated into groundwater through weathering, leaching or redox conditions, and affecting the safety of food crops, microbial community abundance and human health risks, in particular PTEs contaminated paddy soil. Biochar (BC) as a carbon-rich material, is a cost-effective soil amendment that has been recommended for remediation of PTEs contaminated soils. However, the efficiency of BC to immobilize PTEs in contaminated paddy soils under dynamic redox conditions has not been clearly up to date. Thus, in this study, we have (i) quantified the impact of pre-defined redox conditions on the release dynamic of dissolved Cr, Ni, Cu, and Zn in the studied soil as affected by biochar addition, (ii) determined the impact of biochar addition, redox potential (Eh), pH, dissolved organic carbon (DOC), metals, anions and specific UV absorbance (SUVA254nm) on dynamics of heavy metals. In this study, the soil was collected from the alluvial plain of Changhua county in western Taiwan, and the soil was analyzed for basic soil characteristics and total metal content corresponding to the sequential extraction. An automated biogeochemical microcosm system was added with 300 g soil mixed with 30 g straw powder and ultrapure water in 1:8 ratio. The range of the pre-defined redox conditions was 250 mV to - 200 mV, and oxidized to 250 mV. The total incubation period was approximately 35 to 48 days. The pre-set EH windows were achieved at least 24 h before sampling and automatically maintained with the flushing of N2 and O2. Incubated soil samples were collected at different oxidation-reduction potentials, after centrifugation, filtering in a nitrogen glove box, and measuring heavy metal, dissolve organic carbon, anion concentration and specific ultraviolet absorbance (SUVA254 nm) in the filtrate. According to the experimental results, the range of the pre-defined redox conditions was +250 mV to - 200 mV, and oxidized to +250 mV. The temporal course of Eh and pH in the MCs revealed converse relationship in S and S+BC was detected, which was presumed to the reduction and dissolution of Mn hydroxides and microbial activity. The concentration of DOC in S and S+BC under reducing conditions increased might be due to release of the bounded organic matter onto the reductively dissolved-Fe/Mn and the release of DOC from soluble organic metabolites produced by reducing bacteria under reductive conditions. Moreover, the concentration of DOC has consistent trends with metals. The increase in SUVA254nm with time related to the community of microbial population. Anions had a significant positive relationship with DOC. Biochars have the potential to immobilize heavy metals in contaminated soils; however, in this study, the solubility of metals in S+BC were much higher than in S. It might be due to DOC, more DOC could provide more sites for metals to complex. When Eh declined, DOC released by reduction and dissolution; thus, the solubility of metals increased. To sum up, adding 5% rice husk biochar might increase the concentration of PTEs. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:20Z (GMT). No. of bitstreams: 1 ntu-108-R06623006-1.pdf: 4065966 bytes, checksum: 621a8ab5ed14f817cee244b194224092 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 圖目錄 VII 表目錄 VIII 第一章 前言 1 第二章 文獻回顧 3 2.1 重金屬來源與移動性 3 2.2 重金屬在土壤中的鍵結型態 5 2.3 鉻 6 2.4 鎳 7 2.5 銅 7 2.6 鋅 8 2.7 生物炭 9 2.7.1 生物炭概述及特性 9 2.7.2 生物炭影響之土壤微生物群落組成 10 2.8 水稻田土壤氧化還原電位 11 2.9 土壤性質對重金屬溶解的影響 13 2.9.1 氧化還原電位(Redox potential, Eh) 13 2.9.2 pH 14 2.9.3 鐵錳(氫)氧化物 15 2.9.4 可溶性有機碳(DOC)及專一性紫外光吸收度(SUVA254nm) 16 2.9.5 金屬陽離子與陰離子 17 2.10 土壤微系統 18 第三章 材料與方法 20 3.1 供試土壤樣品採集與製備 20 3.2 供試生物炭製備 20 3.3 供試土壤基本性質分析 22 3.4 生物地球化學微系統供試 29 3.4.1 生物地球化學微系統裝置 (biogeochemical microcosm system) 29 3.4.2 微系統操作 31 3.4.3 溶液樣品分析 32 3.4.4 土壤樣品分析 33 3.5 品質保證與品質管制 (QA/QC) 35 3.6 Eh-pH圖與化學物種分布模擬 35 3.7統計分析 36 第四章 結果與討論 37 4.1 供試土壤及生物炭基本特性 37 4.2 鉻、鎳、銅、鋅之序列萃取結果 40 4.3 供試土壤處理組(S)與稻殼生物炭處理組(S+BC)之土壤微系統 42 4.3.1 Eh與pH 42 4.3.2 生物地球化學因子 46 4.3.3鉻、鎳、銅、鋅之溶解度 60 4.3.4 主成分分析 (Principal component analysis, PCA) 70 4.3.5 微生物多樣性及群落組成 73 4.4 可溶性鉻、鎳、銅、鋅之物種變化 75 第五章 結論 78 第六章 參考文獻 79 第七章 附錄 87 | |
| dc.language.iso | zh-TW | |
| dc.title | 施用稻殼生物炭於污染土壤中探討氧化還原作用對土壤重金屬溶解度的影響 | zh_TW |
| dc.title | Effects of rice husk biochar on heavy metals solubility under dynamic redox-conditions in a contaminated soil | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢,王尚禮,鄒裕民,莊愷瑋 | |
| dc.subject.keyword | 潛在有毒元素,水稻田土壤,微系統,氧化還原電位,生物炭, | zh_TW |
| dc.subject.keyword | Potentially toxic element,paddy soil,microcosm apparatus,redox potential,biochar, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201903049 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-19 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 3.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
