Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72215
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷(Yu-Ting Hsu)
dc.contributor.authorWen-Yu Hsuen
dc.contributor.author許文瑜zh_TW
dc.date.accessioned2021-06-17T06:29:23Z-
dc.date.available2021-02-20
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-18
dc.identifier.citation1.交通部高速公路局 (2018) 。各類車種旅次數量【原始數據】。取自交通資料庫https://tisvcloud.freeway.gov.tw/
2.交通部高速公路局 (2020) 。高速公路計程電子收費階段交通資料蒐集支援系統 (Traffic Data Collection System, TDCS) 資料使用手冊 (V3.2) 。取自交通部高速公路局-交通資料庫網址https://tisvcloud.freeway.gov.tw/Sites/fyti/doc/TDCS使用手冊v32.pdf
3.李文宇 (2019) 。應用深度學習自編碼於臺鐵國定假日之運量分析 (未出版碩士論文) 。國立臺灣大學,臺北市。
4.樊曦、趙文君 (2018) 。春運收官 全國旅客發送量近30億人次。新華網。2021年2月14日,取自http://www.xinhuanet.com/politics/2018-03/12/c_1122527018.htm
5.萬家豪 (2018) 。ETC旅次資料應用於下匝道地方號誌協控策略。取自http://www.ceci.org.tw/Upload/Download/FCA4D406-2440-4F70-B3DC-8503A7DA502F.pdf
6.Agarwal, M., Maze, T. H., Souleyrette, R. (2005) . Impacts of weather on urban freeway traffic flow characteristics and facility capacity. In Proceedings of the 2005 mid-continent transportation research symposium ,18-19.
7.Akin, D., Sisiopiku, V. P., Skabardonis, A. (2011) . Impacts of weather on traffic flow characteristics of urban freeways in Istanbul. Procedia-Social and Behavioral Sciences, 16, 89-99.
8.Bischoff, J., Maciejewski, M., Sohr, A. (2015, June) . Analysis of Berlin's taxi services by exploring GPS traces. In 2015 International conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) , IEEE, 209-215.
9.Blinova, T. O. (2007) . Analysis of possibility of using neural network to forecast passenger traffic flows in Russia. Aviation, 11 (1) , 28-34.
10.Boriboonsomsin, K., Barth, M. (2008) . Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions. Transportation Research Part D: Transport and Environment, 13 (2) , 112-125.
11.Burger, N. E., Kaffine, D. T. (2009) . Gas prices, traffic, and freeway speeds in Los Angeles. The Review of Economics and Statistics, 91 (3) , 652-657.
12.Burke, P. J., Nishitateno, S. (2015) . Gasoline prices and road fatalities: international evidence. Economic Inquiry, 53 (3) , 1437-1450.
13.Buttrey, S. E., Karo, C. (2002) . Using k-nearest-neighbor classification in the leaves of a tree. Computational Statistics Data Analysis, 40 (1) , 27-37.
14.Chengwei (2018) . How to do Unsupervised Clustering with Keras. Retrieved March 11, 2019, from https://www.dlology.com/blog/how-to-do-unsupervised-clustering-with-keras/
15.Deng, Z., Ji, M. (2011) . Spatiotemporal structure of taxi services in Shanghai: Using exploratory spatial data analysis. In 2011 19th International Conference on Geoinformatics, IEEE, 1-5.
16.Faghih-Imani, A., Anowar, S., Miller, E. J., Eluru, N. (2017) . Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City. Transportation Research Part A: Policy and Practice, 101, 11-21.
17.Gao, G., Wang, Z., Liu, X., Li, Q., Wang, W., Zhang, J. (2019) . Travel behavior analysis using 2016 Qingdao’s household traffic surveys and Baidu electric map API data. Journal of Advanced Transportation, 2019, Article ID 6383097. Retrieved March 11, 2019, from https://www.hindawi.com/journals/jat/2019/6383097/
18.Grange, L., Troncoso, R. (2011) . Impacts of vehicle restrictions on urban transport flows: the case of Santiago, Chile. Transport Policy, 18 (6) , 862-869.
19.Hinton, G. E., Salakhutdinov, R. R. (2006) . Reducing the dimensionality of data with neural networks. Science, 313 (5786) , 504-507.
20.Hirai, S., Xing, J., Kobayashi, M., Horiguchi, R., Uno, N. (2015) . Preliminary analysis on the resting behavior of expressway users with ETC data. In Proceedings of the 22nd ITS World Congress, Bordeaux, France.
21.Lakhina A., Papagiannaki K., Crovella M., Diot C., Kolaczyk E. D., Taft N. (2004) . Structural analysis of network traffic flows. In Proceedings of the joint international conference on Measurement and modeling of computer systems, 61-72.
22.Lin C.-K., Chang, C.-H., Su, J.-M., Chang, C.-N., Shen, M.-H., Tsai, C.-T. (2018) Applying smart card data to estimate and validate the destination of individual trips in transit systems. Transportation Planning Journal, 47 (1) , 1-28.
23.Martin, M., Gale, C., Cockings, S., Harfoot, A. (2018) Origin-destination geO-Demographics for analysis of travel to work flows. Computers, Environment and Urban Systems, 67, 68-79.
24.Miska, M., Warita, H., Kuwahara, M. (2009) . Analysis of Tokyo Metropolitan Expressway’s demand using ETC-OD data. Proceedings of Infrastructure Planning in Japan, 39.
25.Nam, D., Lee, J., Dunston, P., Mannering, F. (1999) . Analysis of the impacts of freeway reconstruction closures in urban areas. Transportation research record, 1654 (1) , 161-170.
26.Ronan, T., Qi, Z., Naegle, K. M. (2016) . Avoiding common pitfalls when clustering biological data. Science Signaling, 9 (432) , re6.
27.Rousseeuw, P. J. (1987) . Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
28.Lou, S.-Y., Wen, Y.-H., Hsu Y.-T. (2019) Exploring Holiday Trip Patterns on Freeways Based on Electronic Toll Collection Data. Journal of the Eastern Asia Society for Transportation Studies. In Proceedings of the 13th EASTS Conference in Colombo, Sri Lanka.
29.Tong C.-C., Feng C.-H. (2018) Taste Variation in Disaggregate Choice Model: A Comparative Study of User Segmentation Techniques. Tamkang University.
30.Wang, H., Huang, H., Ni, X., Zeng, W. (2019) . Revealing spatial-temporal characteristics and patterns of urban travel: A large-scale analysis and visualization study with taxi GPS data. ISPRS International Journal of Geo-Information, 8 (6) , 257.
31.Wang, J.-C., Guo, J.-G. (2004) Logistic Regression Models, Taiwan: WU-NAN.
32.Wang, L., Xu, J., Qin, P. (2014) . Will a driving restriction policy reduce car trips?—The case study of Beijing, China. Transportation Research Part A: Policy and Practice, 67, 279-290.
33.Xie, J., Girshick, R., Farhadi, A. (2016) . Unsupervised deep embedding for clustering analysis. In 33rd International conference on machine learning, ICML, 478-487.
34.Yang, C., Yan, F., Xu, X. (2017) . Daily metro origin-destination pattern recognition using dimensionality reduction and clustering methods. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) , IEEE, 548-553.
35.Yeh, I.-S. (2017) The analysis of the crowd moving in taipei mrt system, Journal of the Chinese Statistical Association, 55, 69-95.
36.Zhao, J., Cui, J., Zhang, Y., Luo, T. (2017, July) . Impact of Holiday-Free Policy on Traffic Volume of Freeway: An Investigation in Xi’an. In International Conference on Green Intelligent Transportation System and Safety, 117-124
37.Zhao, N., Qi, T., Yu, L., Zhang, J., Jiang, P. (2014) . A practical method for estimating traffic flow characteristic parameters of tolled expressway using toll data. Procedia-Social and Behavioral Sciences, 138, 632-640.
38.Zhu, B., Xu, X. (2015) . Urban principal traffic flow analysis based on taxi trajectories mining. In International Conference in Swarm Intelligence, 172-181.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72215-
dc.description.abstract臺灣每年有八個國定假日,依序為元旦、春節、二二八和平紀念日、清明節、勞動節、端午節、中秋節、及國慶日。除了春節連續假期長達六天 (以上) 以及少數一天及二天之假期外,其餘假期長度多為三至四天。過往由於資料取得問題,針對國道旅次資料,並無系統性的研究,在2014年高速公路設置ETC後,可透過收費資料推估旅次。如能明確掌握國定假日各日旅次分布之情形,將可提供管理單位參考,藉此研擬較完善之交通管理措施。過往關於高速公路旅次的研究,大多是為利用旅次資料推估高速公路之速率、交通量或用路人行為。相對而言,少有針對國定假日各日的旅次特性進行分析之研究,因此本研究擬提出一巨觀之高速公路旅次特性分析方法,基於ETC資料對於國定假日期間的旅運需求特性進行探討,期望對於往後的國定假日,能在事前瞭解每一日可能的旅次分布,將之作為交通管理措施研擬的參考。
本研究的研究方法為使用每一放假日的「縣市起訖 (O-D) -日旅次分布」矩陣,逐日分析其旅次特性,使用深度學習自編碼 (Deep Auto-encoder) 降維、擷取特徵,再使用K-means分群法 (K-means Clustering) 將旅次分布特性相似的放假日分群,並找出各群的代表特徵。研究結果將國定假日 (及其前後各一日) 的日O-D矩陣分為四群,分別是「一般日通勤特性」、「國定假日具部分通勤特性」、「國定假日」以及「春節」。「春節」的分群內中、長程之旅次占比為27.18%及2.07%,居四群之冠,「一般日通勤特性」則擁有80.14%短程旅次占比,而「國定假日具部分通勤特性」及「國定假日」介於兩者之間。最後針對「國定假日具部分通勤特性」及「國定假日」兩群建立二項羅吉斯迴歸 (Binary Logistics Regression) 模型,發現國定假日的天數對旅次影響最為顯著,天數越多則旅次分布越趨向「國定假日」之分群,節日 (勞動節及和平紀念日) 、雨量及匝道封閉措施等亦影響旅次分布情形,則使旅次趨向「國定假日具部分通勤特性」之分群。
zh_TW
dc.description.abstractThere are a total of eight National Holidays, which are New Year’s Day, Chinese New Year, 228 Peace Memorial day, Tomb Sweeping Day, Labor Day, Dragon Boat Festival, Moon Festival, and National Day, along the chronological sequence in Taiwan. Except for six-day holidays (or more) during the Chinese New Year and a few one-and twO-Day holidays, most holidays are three to four days. In the past, due to the difficulty in data acquisition, there are few systematic studies on holiday Origin-Destination (O-D) data of freeways. However, after the establishment of ETC on freeways in 2014, the Freeway Bureau can use the toll data to estimate the O-D data. Based on the enhanced understanding of the O-D trip patterns national holidays, it can provide a reference for relevant management authorities, so that they can be better prepared for damad variation on national holidays and develop more effective traffic management measures. Most of the previous studies on freeway O-D trips focus on the estimation of speed, traffic volume, or road user behavior. By contrast, there are few studies analyzing the characteristics of trip O-D patterns on national holidays. Hence, this study seeks to proposed an aggregate analysis framework to investigate the characteristics of freeway trip patterns based on ETC data. It is anticipated that, based on the results of this study, the freeway bureau can infer the possible O-D trip pattern on each national holiday in advance for the traffic management measure development and the associated preparation.
This study uses daily “all-county O-D matrices” on national holidays to analyze its trips characteristics on a day-by-day basis. The Deep Auto-encoder is used for dimension reduction and characteristics retrieval. Then, the K-means Clustering is further employed to identify the representative features of the clustered O-D matrices. The clustering results in four groups of trip patterns, which are “normal daily commuting”, “national holidays with partial commuting”, “national holidays,” and “Chinese New Year.” The proportions of medium-and long-haul trips in the “Chinese New Year” are 27.18% and 2.07% respectively, ranking the top of the four clusters. The proportion of short-haul trips in the “normal daily commuting” is 80.14%. “National holidays with partial commuting” and “national holidays” are characterized by the features lying between “Chinese New Year” and “normal daily commuting.” Finally, the Binary Logistics Regression mO-Del is developed for the two clusters of “national holidays with partial commuting” and “national holidays” to provide explicit inductive interpretation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:29:23Z (GMT). No. of bitstreams: 1
U0001-1802202109553200.pdf: 4010257 bytes, checksum: da2d626c6bc792adf46843cdd16ec62b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 國定假日國道交通疏導措施研議流程 2
1.3 研究動機及目的 3
1.4 研究範圍 4
1.5 論文架構 4
第二章 文獻回顧 6
2.1 臺灣高速公路旅次特性研究 6
2.2 高速公路旅次資料應用研究 6
2.3 其他旅次資料應用研究 7
2.4 資料降維及分群相關研究 9
2.5 影響高速公路交通之因素 9
2.6 文獻回顧小結 11
第三章 研究方法 12
3.1 原始資料處理 13
3.1.1 原始旅次資料 13
3.1.2 資料整理 14
3.2 資料降維及分群 17
3.2.1 深度學習自編碼 (Deep Auto-encoder) 17
3.2.2 非監督式分群: K-means分群法 (K-means Clustering) 18
3.3 模型建構及驗證 18
3.3.1 羅吉斯迴歸 (Logistics Regression) 19
3.3.2 羅吉斯迴歸模型變數資料 20
3.1.3 羅吉斯迴歸模型驗證方式 21
第四章 資料敘述與分析 23
4.1 資料概述 23
4.2 敘述性統計分析 23
4.2.1 敘述性統計描述 (假期) 25
4.2.2 敘述性統計描述 (天數) 27
4.3 逐日旅次資料描述 29
第五章 資料分群與迴歸模式 42
5.1 資料分群 42
5.1.1 資料降維 42
5.1.2 資料分群 43
5.1.3 各分群旅次特性分析 44
5.1.4 分群結果 46
5.1.5 春節假期分析 49
5.2 羅吉斯迴歸模型建構結果與討論 51
5.3 小結與資料驗證 55
5.3.1小結 55
5.3.2資料驗證 56
第六章 結論與建議 57
6.1 研究結論 58
6.2 未來建議 58
參考文獻 60
附錄1:2014年至2019年3月國定假日匝道封閉措施 65
附錄2:2014年至2019年3月國定假日高乘載管制措施 67
附錄3:2018年一般週末暨國定假日「起訖縣市 (O-D) -日旅次分布 (%) 」表 70
dc.language.isozh-TW
dc.subject國定假日zh_TW
dc.subject旅次zh_TW
dc.subject深度學習自編碼zh_TW
dc.subjectK-means分群法zh_TW
dc.subject二項羅吉斯迴歸zh_TW
dc.subjectK-means Clusteringen
dc.subjectTripen
dc.subjectDeep Auto-encoderen
dc.subjectNational Holidaysen
dc.subjectBinary Logistics Regressionen
dc.title高速公路國定假日旅次特性分析zh_TW
dc.titleAnalyzing the Characteristics of Taiwan Freeway Trip Patterns on National Holidaysen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳繼虹(Chi-Hung Wu),郭佩棻(Pei-Fen Kuo)
dc.subject.keyword國定假日,旅次,深度學習自編碼,K-means分群法,二項羅吉斯迴歸,zh_TW
dc.subject.keywordNational Holidays,Trip,Deep Auto-encoder,K-means Clustering,Binary Logistics Regression,en
dc.relation.page111
dc.identifier.doi10.6342/NTU202100734
dc.rights.note有償授權
dc.date.accepted2021-02-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1802202109553200.pdf
  未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved