請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯(Louis Ge) | |
| dc.contributor.author | Jung-Cheng Tsai | en |
| dc.contributor.author | 蔡容正 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:28:05Z | - |
| dc.date.available | 2018-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 1. 黃渝紋. (2012). 三軸壓縮試驗探討蜂巢格網的圍束效應. 臺灣大學土木工程學研究所學位論文, 1-120.
2. 陳律村. (2013). 傳統三軸應力路徑下石英砂之臨界狀態與其力學行為. 臺灣大學土木工程學研究所學位論文, 1-119. 3. 卓玉庭. (2014). GCTS 三軸儀功能研究與混和砂孔隙比變化之分析. 臺灣大學土木工程學研究所學位論文, 1-116. 4. 謝蕙霙. (2014). 以三向度數值分析模擬地盤改良與開挖變形之關係. 臺北科技大學土木與防災研究所學位論文, 1-110. 5. ASTM D4253-00. (2006). Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA. 6. ASTM D854-06e1. (2006). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA. 7. ASTM D422.63. (2007). Standard test method for particle size analysis of soil. ASTM International, West Conshohocken, PA, USA. 8. ASTM D7181-11. (2011). Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA. 9. ASTM D4767-11. (2011). Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, USA. 10. Badee, A., Aziman, M., Ismail, B. (2017). Assessment on the effect of fine content and moisture content towards shear strength. Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 48 No. 4 (2017) 11. Belkhatir, M., Missoum, H., Arab, A., Della, N., & Schanz, T. (2011). The undrained shear strength characteristics of silty sand: an experimental study of the effect of fines. Geologia Croatica, 64(1), 31-39. 12. Bishop, A. W., & Eldin, G. (1950). Undrained triaxial tests on saturated sands and their significance in the general theory of shear strength. Geotechnique, 2(1), 13-32. 13. Brinkgreve, R. B. J., & Broere, W. (2015). PLAXIS 2D Reference Manual 2015. Delft, Netherlands2010. 14. Brinkgreve, R. B. J., Broere, W., & Waterman, D. (2008). PLAXIS 2D Manual, Version 9.0. Delft University of Technology and PLAXIS. 15. Cubrinovski, M., & Rees, S. (2008). Effects of fines on undrained behaviour of sands. In Geotechnical earthquake engineering and soil dynamics IV (pp. 1-11). 16. Ehsan, R. (2013). A study of geotechnical constitutive models using PLAXIS 2D. ICE Thames Valley Branch G&S Papers Competition. 17. Ho, D. Y., & Fredlund, D. G. (1982). A multistage triaxial test for unsaturated soils. Geotechnical Testing Journal, 5(1/2), 18-25. 18. Islam, M. N., Siddika, A., Hossain, M. B., Rahman, A., & Asad, M. A. (2011). Effect of particle size on the shear strength behaviour of sands. Australian Geomechanics, 46(3), 75-86. 19. Kenney, T. C. (1961). Multiple-stage triaxial test for determining c'and o'of saturated soils. Technical Memorandum, Division of Building Research, National Research Council Canada, (72-2), 1-5. 20. Khosravi, A., Alsherif, N., Lynch, C., & McCartney, J. (2011). Multistage Triaxial Testing to Estimate Effective Stress Relationships for Unsaturated Compacted Soils. Geotechnical Testing Journal, 35(1), 128-134. 21. Kondner, R. L. (1963). Hyperbolic stress-strain response: cohesive soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 115-144. 22. Lade, P. V., Liggio, C. D., & Yamamuro, J. A. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21, 336-347. 23. McGeary, R. K. (1961). Mechanical packing of spherical particles. Journal of the American ceramic Society, 44(10), 513-522. 24. Saeedy, H. S., & Mollah, M. A. (1988). Application of multistage triaxial test to Kuwaiti soils. In Advanced triaxial testing of soil and rock. ASTM International. 25. Shapiro, S., & Yamamuro, J. A. (2003). Effects of silt on three-dimensional stress–strain behavior of loose sand. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 1-11. 26. Soranzo, M. (1988). Results and interpretation of multistage triaxial compression tests. In Advanced triaxial testing of soil and rock. ASTM International. 27. Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and foundations, 52(4), 682-697. 28. Yamamuro, J. A., & Lade, P. V. (1998). Steady-state concepts and static liquefaction of silty sands. Journal of geotechnical and geoenvironmental engineering, 124(9), 868-877. 29. Yilmaz, Y. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104(3-4), 290-294. 30. Venter, J., Purvis, C., & Hamman, J. (2016, September). Hoek–Brown mi estimation—a comparison of multistage triaxial with single stage triaxial testing. In Proceedings of the First Asia Pacific Slope Stability in Mining Conference (pp. 289-299). Australian Centre for Geomechanics. 31. Zhu, J. Q., Kong, L. W., & Zhong, F. J. (2007). Effect of fines content on strength of silty sands. CHINESE JOURNAL OF GEOTECHNICAL ENGINEERING-CHINESE EDITION-, 29(11), 1647. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72192 | - |
| dc.description.abstract | 現今面對水位狀態不易描述之邊坡或深開挖工程時,以不排水狀態之剪力強度進行設計,結果趨向保守且便利,故目前已成為大地工程界最倚賴的強度指標。但相較於有效應力參數,可具體以摩擦力表示其力學行為,不排水剪力強度僅能表示土壤在不排水狀態下之承載能力,並不具物理意義,因此本研究先藉由三軸試驗獲得砂土之有效應力參數,在透過有限元素法軟體PLAXIS 2D模擬土壤不排水試驗,希望藉此找出不排水強度與有效應力參數之關係,並定義其力學現象。
高細粒料含量砂土為最常釀成液化災害之土壤,對於含細粒料砂土性質與強度有其研究之重要性。因此本研究採用粒徑尺寸單ㄧ之粗細顆粒混合砂土,作為試驗土樣,以細粒料含量、排水條件作為試驗變因,並加入多段式試驗與解壓-再壓試驗,探討細粒料含量對砂土排水與不排水行為之影響,以及檢核多段式試驗對本研究土樣之適用性。數值模擬方面,先透過三軸試驗獲得模擬所需之有效應力參數,再配合排水試驗曲線進行參數優化,以優化後之有效應力參數,模擬砂土不排水行為,最後再將模擬結果與真實試驗作比較,探討有效應力參數與不排水強度之關係。 試驗結果顯示:砂土之細粒料含量是影響三軸試驗結果重要的試驗變因,尖峰強度、孔隙水壓激發量、彈性模數、摩擦角等皆受其影響。多段式試驗在本研究中,試驗強度均低於傳統試驗,推測是受到相對密度與土壤產生剪脹行為所影響,導致結果不如預期。數值模擬結果顯示:在排水試驗模擬中,硬化土壤模式相較於莫爾-庫倫模式,更能反應出真實土壤行為。以硬化土壤模式預測易剪脹土壤不排水行為時,建議將m與Rf參數皆設定為0,如此較能反應出因正負孔隙水壓變化,所導致不同加載斜率之現象。透過本研究也證實了,要在缺少不排水試驗曲線下,預測砂土不排水行為,目前還無法做到。 | zh_TW |
| dc.description.abstract | Nowadays, in the face of slopes or deep excavation projects where the water level is not easy to describe, the shear strength of the undrained state is used for design. The result tends to be conservative and convenient. Therefore, it has become the most important strength indicator for the geotechnical engineering community. However, compared with the effective stress parameters, the mechanical behavior can be expressed in terms of friction. The undrained shear strength can only represent the carrying capacity of the soil under undrained conditions, and has no physical meaning. Therefore, this study was first conducted by the triaxial test. The effective stress parameters of sand were obtained and the soil undrained test was simulated by the finite element software PLAXIS 2D. It is hoped that the relationship between the undrained strength and the effective stress parameters can be found and the physical phenomena can be defined.
High fines content sand is the soil most commonly responsible for liquefaction, and it is important for the study of the properties and strength of sand containing fine-grained . Therefore, in this study, coarse-grained mixed sand with particle size was used as the test soil sample, and the fines content and drainage conditions were used as test variables, and the multistage triaxial test and unloading-reloading test were added. To investigate the effect of fines content on drainage and undrained behavior of sand and the applicability of the multistage triaxial test to the soil sample. In numerical simulation, the effective stress parameters required for the simulation are obtained through the triaxial test, and the effective stress parameters are optimized with the drainage test curve. Based on the optimized effective stress parameters, the undrained behavior of the sand was simulated. Finally, the simulation results were compared with the actual test to explore the relationship between the effective stress parameters and the undrained strength. The test results show that the fines content of sand is an important experimental factor affecting the triaxial test results, and the peak strength, pore water pressure excitation amount, elastic modulus and friction angle are all affected. Multistage triaxial test in this study, the test intensity was lower than the traditional test, which was supposed to be affected by the relative density and the dilatancy behavior of the soil, resulting in less than expected results. The numerical simulation results show that in the simulation of drainage test, the hardening soil model is more reflective of the true soil behavior than the Mohr-Coulomb model. When predicting the undrained behavior of the easily dilatable soil by the hardening soil model, it is recommended to set the m and Rf parameters to 0, which is more likely to reflect the phenomenon of different loading slopes due to pore water pressure changes. It has also been confirmed through this study that it is impossible to predict the undrained behavior of sand in the absence of an undrained test curve. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:28:05Z (GMT). No. of bitstreams: 1 ntu-107-R05521111-1.pdf: 16922400 bytes, checksum: 125dcf6636bea245182e8a758ba12775 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 表目錄 XI 圖目錄 XII 符號表 XX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 1 1.3 研究架構 2 第二章 文獻回顧 4 2.1 細粒料含量對孔隙比之影響 4 2.2 含細粒料砂土強度特性相關研究 5 2.2.1 三軸試驗 5 2.2.2 直剪試驗 6 2.2.3 真三軸試驗 7 2.3 多段式三軸試驗相關研究 7 2.4 小結 9 第三章 試驗方法 29 3.1 試驗規劃 29 3.2 試驗材料 29 3.2.1粒徑分析 29 3.2.2比重試驗 30 3.2.3最大最小乾密度試驗 30 3.3 試驗儀器與校正 30 3.3.1 三軸試驗儀器與設備 30 3.3.2 儀器校正 31 3.3.3 橡皮膜勁度校正 32 3.4 試驗步驟 32 3.4.1 試體配置步驟 33 3.4.2 多段式三軸試驗步驟 35 第四章 PLAXIS 2D數值模擬 48 4.1 PLAXIS軟體簡介 48 4.2 土壤組成律模式 48 4.2.1 莫爾-庫倫模式 48 4.2.2 莫爾-庫倫模式相關參數 50 4.2.3 硬化土壤模式 51 4.2.4 硬化土壤模式相關參數 53 4.3 不排水分析簡介 54 4.3.1 以有效應力參數進行不排水分析 54 4.3.2 以不排水參數進行不排水分析 56 4.3.3 不排水分析種類 57 4.4 模型架構介紹 58 4.4.1 模型幾何尺寸與邊界條件 58 4.4.2 土壤參數選取 58 4.4.3 數值分析流程 58 第五章 試驗結果 66 5.1 細粒料含量0%之三軸壓縮試驗 66 5.1.1 細粒料含量0%之三軸CD試驗 66 5.1.2 細粒料含量0%之三軸CU試驗 67 5.2 細粒料含量15%之三軸壓縮試驗 67 5.2.1 細粒料含量15%之三軸MCD試驗 67 5.2.2 細粒料含量15%之三軸LUR-CD試驗 68 5.2.3 細粒料含量15%之三軸CU試驗 68 5.3 細粒料含量35%之三軸壓縮試驗 69 5.3.1 細粒料含量35%之三軸MCD試驗 69 5.3.2 細粒料含量35%之三軸LUR-CD試驗 69 5.3.3 細粒料含量35%之三軸CU試驗 70 5.4 細粒料含量70%之三軸壓縮試驗 70 5.4.1 細粒料含量70%之三軸MCD試驗 70 5.4.2 細粒料含量70%之三軸LUR-CD試驗 70 5.4.3 細粒料含量70%之三軸CU試驗 71 5.5 細粒料含量100%之三軸壓縮試驗 71 5.5.1 細粒料含量100%之三軸MCD試驗 71 5.5.2 細粒料含量100%之三軸LUR-CD試驗 72 5.5.3 細粒料含量100%之三軸CU試驗 72 第六章 數值模擬結果 99 6.1 數值模型驗證 99 6.1.1 模型幾合與邊界驗證 99 6.1.2 模型參數驗證 100 6.2 莫爾-庫倫(MC)模式 100 6.2.1 莫爾-庫倫模式之參數 100 6.2.2 三軸排水試驗模擬 101 6.2.3 三軸不排水試驗模擬 101 6.3 硬化土壤(HS)模式-以排水曲線優化參數 102 6.3.1 硬化土壤模式之參數 102 6.3.2 三軸排水試驗模擬 103 6.3.3 三軸不排水試驗模擬 103 6.4 硬化土壤(HS)模式-以不排水曲線優化參數 104 6.4.1 三軸不排水試驗模擬 104 6.4.2 不排水曲線優化後之參數 105 6.5 硬化土壤(HS)模式-m與Rf參數之影響 105 6.5.1 m=0 與Rf =0 優化參數介紹 105 6.5.2 三軸排水試驗模擬 105 6.5.3 三軸不排水試驗模擬 106 6.6 硬化土壤(HS)模式-同時以m=0、Rf =0優化參數 106 6.6.1 m=0、Rf =0 優化後之參數 106 6.6.2 三軸排水試驗模擬 106 6.6.3 三軸不排水試驗模擬 107 第七章 討論與分析 140 7.1 細粒料含量對三軸試驗之影響 140 7.1.1 排水試驗 140 7.1.2 不排水試驗 140 7.1.3 強度參數 141 7.1.4 材料勁度 141 7.2 多段式試驗對三軸試驗之影響 142 7.2.1 多段式與傳統試驗之比較 142 7.2.2 細粒料含量對多段式試驗之影響 142 7.3 莫爾-庫倫與硬化土壤模式之優劣 143 7.3.1 排水試驗模擬之比較 143 7.3.2 不排水試驗模擬之比較 143 7.4 硬化土壤模式-m與Rf參數皆為0之適用性 144 7.4.1 排水試驗模擬之比較 144 7.4.2 不排水試驗模擬之比較 145 第八章 結論與建議 166 8.1 結論 166 8.2 建議 167 參考文獻 168 附錄A 雙向軸對稱對數值模擬之影響 171 附錄B 改變Kw水體積模數對數值模擬之影響 175 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細粒料含量 | zh_TW |
| dc.subject | PLAXIS 2D | zh_TW |
| dc.subject | 多段式試驗 | zh_TW |
| dc.subject | 三軸壓縮試驗 | zh_TW |
| dc.subject | triaxial compression test | en |
| dc.subject | multistage triaxial test | en |
| dc.subject | fines content | en |
| dc.subject | PLAXIS 2D | en |
| dc.title | 以有效應力參數評估含細粒料砂土不排水之力學行為 | zh_TW |
| dc.title | Assessment of Undrained Behavior of Sands Containing Fines with Effective Stress Parameters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊國鑫(KUO-HSIN YANG),邱俊翔(JIUN-SHIANG CHIOU) | |
| dc.subject.keyword | 三軸壓縮試驗,多段式試驗,細粒料含量,PLAXIS 2D, | zh_TW |
| dc.subject.keyword | triaxial compression test,multistage triaxial test,fines content,PLAXIS 2D, | en |
| dc.relation.page | 178 | |
| dc.identifier.doi | 10.6342/NTU201803744 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 16.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
