Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorLi-Ta Chenen
dc.contributor.author陳立達zh_TW
dc.date.accessioned2021-06-17T06:27:30Z-
dc.date.available2018-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAmmari, F., Redjdal, L., & Rutledge, D. N. (2015). Detection of orange juice frauds using front-face fluorxescence spectroscopy and Independent Components Analysis. Food Chem, 168, 211-217.
Andersen, C. M., Frøst, M. B., & Viereck, N. (2010). Spectroscopic characterization of low- and non-fat cream cheeses. International Dairy Journal, 20(1), 32-39.
Cho, B.-K., Kim, M. S., Baek, I.-S., Kim, D.-Y., Lee, W.-H., Kim, J., . . . Kim, Y.-S. (2013). Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biology and Technology, 76, 40-49.
Cluff, K., Konda Naganathan, G., Subbiah, J., Lu, R., Calkins, C. R., & Samal, A. (2008). Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sensing and Instrumentation for Food Quality and Safety, 2(3), 189-196.
Dankowska, A., Malecka, M., & Kowalewski, W. (2015). Detection of plant oil addition to cheese by synchronous fluorescence spectroscopy. Dairy Sci Technol, 95(4), 413-424.
Elmasry, G., Kamruzzaman, M., Sun, D. W., & Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit Rev Food Sci Nutr, 52(11), 999-1023.
ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98-107.
Gao, F., Dong, Y., Xiao, W., Yin, B., Yan, C., & He, S. (2016). LED-induced fluorescence spectroscopy technique for apple freshness and quality detection. Postharvest Biology and Technology, 119, 27-32.
Gowen, A. A., O’Donnell, C. P., Taghizadeh, M., Cullen, P. J., Frias, J. M., and Downey, G. (2007). Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricusbisporus). Journal of Chemometrics. 22: 259–267.
Guo, F., Cao, Q., Nagata, M., and Tallada, J. G. (2007). NIR hyperspectral imagingmeasurement of sugar content in peach using PLS regression. Journal of Shanghai Jiao Tong University (Science). E-12(5): 597–601.
Kim, J. M., Kim, H. J., & Park, J. M. (2015). Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis. J Food Sci, 80(9), C1945-1951.
Kumar, A., Lal, D., Seth, R., & Sharma, V. (2010). Detection of milk fat adulteration with admixture of foreign oils and fats using a fractionation technique and the apparent solidification time test. International Journal of Dairy Technology, 63(3), 457-462.
Menesatti, P., Urbani, G., and Lanza, G. (2005). Spectral imaging Vis-NIR system to forecast the chilling injury onset on citrus fruits. Acta Horticulturae.(ISHS) 682: 1347–1354.
Milanez, K. D. T. M., Nóbrega, T. C. A., Nascimento, D. S., Insausti, M., Band, B. S. F., & Pontes, M. J. C. (2017). Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. LWT - Food Science and Technology, 85, 9-15.
Moser, S., Muller, T., Holzinger, T., Lutz, C., Jockusch, S., Nicholas J. Turro, J. N.,
, Krautler, B. Fluorescent chlorophyll catabolites in bananas light up blue halos of celldeath. PNAS, 106 (37) 15538-15543.
Nakariyakul, S., Casasent, D. (2007). Fusion algorithm for poultry skin tumor detection using
hyperspectral data. Optical Society of America, Vol. 46, No. 3.
Nicola¨ı, B. M., Beullens, E. B., Peirs, A., Saeys,W., Theron, K. I., and Lammertyna, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology. 46(2): 99–118.
Kim, I., Kim, M. S., Chen, Y. R., and Kong, S. G. (2004). Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging. Transactions of the ASAE. 47(5): 1785–1792.
Kim, M. S., Chen Y. R., Cho, B. K., Chao, K., Yang, C. C., Lefcourt, A. M., and Chan, D. (2007). Hyperspectral reflectance and fluorescence line-scan imaging for online defects and fecal contamination inspection of apples. Sensing and Instrumentation Food Quality. 1: 151–159.
Kyriakidis B. N., Skarkalis P. Fluorescence Spectra Measurement of Olive Oil and Other Vegetable Oils. AOAC, VOL. 83, NO. 6, 2000.
Lawrence, K. C., Windham, W. R., Park, B., and Buhr, R. J. (2003b). Hyperspectral imaging system for identification of faecal and ingesta contamination on poultry carcasses. Journal of Near Infrared Spectroscopy. 11(4): 269–281.
Ntakatsane, M. P., Liu, X. M., & Zhou, P. (2013). Short communication: rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy. J Dairy Sci, 96(4), 2130-2136.
Pu, Y.-Y., Feng, Y.-Z., & Sun, D.-W. (2015). Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 14(2), 176-188.
Ullah, R., Khan, S., Bilal, M., Nurjis, F., & Saleem, M. (2016). Non-invasive assessment of mango ripening using fluorescence spectroscopy. Optik - International Journal for Light and Electron Optics, 127(13), 5186-5189.
Xu, W., Bai, J., Peng, J., Samanta, A., Divyanshu, & Chang, Y. T. (2014). Milk quality control: instant and quantitative milk fat determination with a BODIPY sensor-based fluorescence detector. Chem Commun (Camb), 50(72), 10398-10401.
Zhang, R., Ying, Y., Rao, X., & Li, J. (2012). Quality and safety assessment of food and agricultural products by hyperspectral fluorescence imaging. J Sci Food Agric, 92(12), 2397-2408.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72181-
dc.description.abstract近年來發生多起食品安全事件,在經由文獻以及實際訪問後得知油品的混摻是為常見且現今仍然存在的問題且牛油是為較常見的混摻對象之一,傳統的食品檢測流程需要大量人力及時間成本,在此考量之下本研究致力於應用相對快速且非破壞性的高光譜螢光影像於食品性質之檢測方法。本研究以檢測牛油為主要對象,分別混合了米糠油、芥花油以及橄欖油於五種不同濃度 (100%, 75%, 50%, 25%, 0%) ,透過建立各個油品的激發散射矩陣找出油品的激發光波段。並以選定的激發光搭配高光譜影像系統收集光譜數據,分別使用了人工神經網路 (Artificial Neural Network, ANN) 建立混合油種的分類判別模型。預測模型效果上純牛油、米糠油、芥花油以及橄欖油的準確率可達7.33%、99.50%、100.00%、68.25%。另亦使用輔助向量迴歸 (Support Vector Regression, SVR) 方法預測牛油與米糠油、芥花油以及橄欖油的混合油中的牛油濃度平均誤差為14.58%、3.81%、10.64%。以及考量到不同廠牌造成之影響後,使用ANN分類得純牛油、米糠油、芥花油以及橄欖油預測準確率為88.53%、97.4%、82.13%、59.5%。使用SVR方法預測為15.00%、7.61%以及11.31%。使用ANN模型在預測桌上型檢測裝置所量測之數據之準確率,在分類純牛油、摻雜米糠油、摻雜芥花油、摻雜橄欖油的準確率為97.00%、100.00%、100.00%、100.00%。使用SVR模型在預測桌上型檢測裝置所量測之數據之準確率,在預測牛油分別與米糠油、芥花油以及橄欖油的混合中牛油的濃度平均誤差分別為7.18%、10.16%以及11.92%。zh_TW
dc.description.abstractIn recent years there’s lots of food safety issue around the world, according to the paper review and market survey we conclude that oil adulteration is one of the most commonly event in actual problems, whereas traditional inspection process takes time and laborious so as a respond this research aims to discover the potential of using Hyperspectral fluorescence imaging to assess the oil concentration. In this research, Ghee is the adulteration target, which will be adulterated with Rice bran, Canola, Olive oil in five concentration level (100%, 75%, 50%, 25%, 0%) respectively, first the use of Excitation and emission matrix gives the information about what exact excitation light should be used to induce fluorescence, use this excitation as a light source in Hyperspectral imaging system to get the fluorescence spectrum for each oil mixture, and build the ANN model to classify the adulterated type, for pure Ghee, adulterated Rice bran, Canola, Olive oil the accuracy approaching 7.33%, 99.50%, 100.00%, 68.25% respectively, SVR model for predicting the Ghee concentration in oil mixture reaching averaging error 88.53%, 97.4%, 82.13%, 59.5% respectively, furthermore, if also takes the different brand factor for each plant oil into account, the accuracy for ANN still retain 100%, 96%, 93.5% respectively, for SVR model we have averaging error 15.00%, 7.61%, 11.31% respectively. For ANN classification accuracy of portable detection device also reaching 97.00%, 100.00%, 100.00%, 100.00%, for SVR model also reaching average error 7.18%, 10.16%, 11.92%, respectively.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:27:30Z (GMT). No. of bitstreams: 1
ntu-107-R05631013-1.pdf: 3752168 bytes, checksum: 1b1c3a4625eeca8f5342e22023e5bcb5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 ix
表目錄 xi
1. 第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
2. 第二章 文獻探討 4
2.1 牛油摻雜議題 4
2.2 牛油摻雜植物油的檢測方法 4
2.2.1 氣相層析法 4
2.2.2 螢光光譜法 5
2.2.3 牛油與植物油的激發光波長 5
2.2.4 快速檢測裝置 6
2.3 高光譜影像系統 6
2.4 高光譜螢光影像 7
3. 第三章 研究設備與方法 9
3.1 實驗材料 9
3.1.1 牛油 9
3.1.2 植物油 10
3.1.3混合油樣本 10
3.2實驗器材 11
3.2.1高光譜影像儀器 11
3.2.2 螢光影像光源 12
3.3 激發發射矩陣 14
3.4 資料前處理 15
3.4.1 影像光源校正 15
3.4.2 以中值濾波抑制光譜雜訊 18
3.4.3 以主成分分析之光譜雜訊抑制 20
3.5 光譜抽樣方法 24
3.6 模型建立 28
3.6.1 分類方法 28
3.6.2 模型配置 34
3.7 快速檢測裝置 35
3.7.1 裝置設計圖 35
3.7.2 感測元件之規格 38
4. 第四章 結果與討論 39
4.1 混合油之螢光光譜 39
4.1.1牛油混合米糠油的螢光光譜 39
4.1.2牛油混合芥花油的螢光光譜 42
4.1.3牛油混合橄欖油的螢光光譜 44
4.1.4整體混合油之螢光光譜降維後之主成分散佈圖 46
4.2 模型參數討論 47
4.2.1 ANN分類模型 47
4.2.2 SVM分類模型 49
4.3 前處理對模型準確率的影響 51
4.4 使用兩個分類模型的模型配置 53
4.5 使用SVR預測牛油濃度 54
4.5 油種的不同品牌對準確率的影響 56
4.5 桌上型檢測裝置之分類結果 59
5. 第五章 結論與建議 62
5.1 結論 62
5.2 建議 63
參考文獻 64
dc.language.isozh-TW
dc.subject螢光高光譜zh_TW
dc.subject牛油zh_TW
dc.subject神經網路zh_TW
dc.subject輔助向量迴歸zh_TW
dc.subject桌上型檢測裝置zh_TW
dc.subjectSVRen
dc.subjectoil adulterationen
dc.subjectGheeen
dc.subjectANNen
dc.subjectHyperspectral fluorescence imagingen
dc.title應用螢光高光譜影像檢測混合動物油與植物油之性質zh_TW
dc.titleApplication of Hyperspectral Fluorescence Imaging to
Assess Characteristics of Animal and Plant Oil Mixture
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝清祿(Ching-Lu Hsieh),陳世芳(Shih-Fang Chen)
dc.subject.keyword螢光高光譜,牛油,神經網路,輔助向量迴歸,桌上型檢測裝置,zh_TW
dc.subject.keywordHyperspectral fluorescence imaging,oil adulteration,Ghee,ANN,SVR,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201803828
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved