請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72177完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.author | Ching-Yen Lee | en |
| dc.contributor.author | 李境嚴 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:27:18Z | - |
| dc.date.available | 2018-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | D. J. Shah, R. K. Sachs, and D. J. Wilson, “Radiation-induced cancer: a modern view,” The British Journal of Radiology, vol. 85, no. 1020, pp. e1166-e1173, 2012.
[2] P. Marina, A. Nieves, E. María, M. Alberto, E. Nieves, A. M. E. Jose, and P. B. Roberto, “Mammographic density and risk of breast cancer according to tumor characteristics and mode of detection: a Spanish population-based case-control study,” Breast Cancer Research, vol. 15, no. 1, pp. R9, 2013. [3] M. R. Hersh, “Imaging the dense breast,” Appl Radiol, vol. 33, no. 1, pp. 22-26, 2004. [4] G. E. Trahey, S. W. Smith, and O. T. v. Ramm, “Speckle Pattern Correlation with Lateral Aperture Translation: Experimental Results and Implications for Spatial Compounding,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 33, no. 3, pp. 257-264, 1986. [5] T. A. Tuthill, J. F. Krücker, J. B. Fowlkes, and P. L. Carson, “Automated three-dimensional US frame positioning computed from elevational speckle decorrelation,” Radiology, vol. 209, no. 2, pp. 575-582, 1998. [6] P. C. Li, C. Y. Li, and W. C. Yeh, “Tissue Motion and Elevational Speckle Decorrelation in Freehand 3D Ultrasound,” Ultrasonic Imaging, vol. 24, no. 1, pp. 1-12, 2002. [7] D. D. Frantz, A. D. Wiles, S. E. Leis, and S. R. Kirsch, “Accuracy assessment protocols for electromagnetic tracking systems,” Physics in Medicine and Biology, vol. 48, no. 14, pp. 2241-2251, 2003. [8] L. Mercier, T. Langø, F. Lindseth, and D. L. Collins, “A review of calibration techniques for freehand 3-D ultrasound systems,” Ultrasound in Medicine & Biology, vol. 31, no. 4, pp. 449-471, 4, 2005. [9] L. REN, T.-S. QIU, and Y. GUO, “Ultrasound Probe Calibration Method Based on Optical Tracking Systems,” Chinese Journal of Biomedical Engineering, vol. 32, no. 5, pp. 527-531, October 2013. [10] T. Yoshida, S. Onogi, Y. Sugano, S. Saito, T. Mochizuki, and K. Masuda, 'Image plane positioning by pneumatic actuators for ultrasound guidance.' pp. 4945-4948. [11] S. W. Chung, C. C. Shih, and C. C. Huang, “Freehand three-dimensional ultrasound imaging of carotid artery using motion tracking technology,” Ultrasonics, vol. 74, pp. 11-20, 2, 2017. [12] ARORA, 'ElectroMagnetic Tracking System.' [13] K. M. Kelly, J. Dean, W. S. Comulada, and S.-J. Lee, “Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,” European Radiology, vol. 20, no. 3, pp. 734-742, 2010. [14] R.-F. Chang, and Y.-W. Shen, '3D whole-breast ultrasonography', 2013 [15] Hitachi. 'SOFIA,' http://www.hitachi-aloka.com/products/sofia/whole-breast-imaging. [16] 'Breast Cancer Staging,' https://cancerstaging.org/references-tools/quickreferences/Pages/default.aspx. [17] A. T. Stavros, C. L. Rapp, and S. H. Parker, 'Breast ultrasound': Lippincott Williams & Wilkins, 2004 [18] Z. Zhengyou, 'Flexible camera calibration by viewing a plane from unknown orientations.' pp. 666-673. [19] C. Daniel Herrera, K. Juho, and H. Janne, “Joint depth and color camera calibration with distortion correction,” IEEE Trans Pattern Anal Mach Intell, vol. 34, no. 10, pp. 2058-64, Oct, 2012. [20] C. Raposo, J. P. Barreto, and U. Nunes, “Fast and Accurate Calibration of a Kinect Sensor,” in Proceedings of the 2013 International Conference on 3D Vision, 2013, pp. 342-349. [21] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking,” in Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, 2012, pp. 524-530. [22] A. M. Dixon, 'Breast Ultrasound HOW, WHY and WHEN', 1 ed., 2008 [23] C. Henningsen, K. Kuntz, and D. Youngs, 'Clinical Guide to Sonography', 2nd Edition ed.: ELSEVIER, 2013 [24] H. Madjar, M. Rickard, J. Jellins, and R. Otto, “IBUS Guidelines for the Ultrasonic Examination of the Breast,” European Journal of Ultrasound, vol. 9, no. 1, pp. 99-102, 1999/03/01/, 1999. [25] C. Brezinka, “Manual of Diagnostic Ultrasound, Volume 2 (Second Edition),” Ultrasound in Medicine and Biology, vol. 40, no. 12, pp. 2903-2904. [26] K. Y. Ju, K. S. Hun, J. S. Kyung, C. J. Jeong, K. B. Joo, and S. B. Joo, “Gel Pad Application for Automated Breast Sonography,” Journal of Ultrasound in Medicine, vol. 34, no. 4, pp. 713-719, 2015. [27] G. Strang, 'Linear Algebra and Its Applications': Thomson, Brooks/Cole, 2006 [28] Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, and Orlando De Jesús, 'Neural Network Design', 2 ed.: PWS Publishing Company, 1996 [29] I. Goodfellow, Y. Bengio, and A. Courville, 'Deep Learning': MIT Press, 2016 [30] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A Tutorial on the Cross-Entropy Method,” Annals of Operations Research, vol. 134, no. 1, pp. 19-67, February 01, 2005. [31] G. V. Rossum, and F. L. Drake, 'Python 3 Reference Manual': CreateSpace, 2009 [32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, 'TensorFlow: a system for large-scale machine learning.' pp. 265-283. [33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada, 2012, pp. 1097-1105. [34] M. D. Zeiler, and R. Fergus, 'Visualizing and Understanding Convolutional Networks,' Computer Vision – ECCV 2014. pp. 818-833. [35] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85-117, 2015/01/01/, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72177 | - |
| dc.description.abstract | 超音波掃描是一個常用於臨床檢查的醫學影像技術,而手持式掃描是超音波檢查的主要執行方式,但檢查結果卻可能因人而異。為了提供更完整的檢查,紀錄且提供實際掃描之影像及位置,並透過該結果實現掃描後病況分析是一個很好的解決方案,而透過機械輔助超音波掃描或是斑點訊號分析均可提供上述資訊。然而,受限於機構設計,現行的機械輔助超波掃描系統難以依照受試者身形進行順行掃描,又或是無法針對複雜表面進行掃描。再者,實際的超音波斑點訊號容易會因身體內的水分、氣體、散射子在組織中的分布不均勻、及影像接觸的程度而被影響。在本研究針對上述的兩項技術提出改良,並嘗試提出更有效的方法來追蹤超音波檢查中的路徑資訊。我們在研究的第一與第二個部分中首先一個機械輔助掃瞄系統,其目標不僅為達到掃描路徑之記錄追蹤、實現的乳房線性與放射性之順形掃瞄,我們更嘗試實現腋下區域之掃描,而該掃描模式目前難以被類似的系統達到。針對臨床需求與建議,我們設計了線性與放射狀等兩種順形掃描模組,同時掃描的影像間距約為0.76 mm,而兩種掃描均透過實際掃描一乳房訪體來驗證,其中兩種掃描分別可以在約75秒與210秒的時間內針對一面積為100 mm 50 mm的矩形與一半徑為50 mm 的圓形區域完成掃描,而基於所紀錄之掃描資訊,我們可以重建一個3D的超音波影像。本研究的最後一個部分為針對斑點訊號的追蹤方式進行修改,藉此達到改良手持式超音波檢查在路徑追中上的準確度。我們的改進包括:1) 製作一個具有均勻散射子分布的仿體墊片作為可靠的斑點訊號來源,2) 發展一套基於奇異值分析 (singular value decomposition, SVD) 的特徵擷取法,以及 3) 導入雙層類神經網路針對位移種類與位移量進行預測。相較於使用傳統進行預測,其結果誤差遠大於0.02 mm 的結果,實驗顯示使用我們提出的方法,可以再在訓練階段達到高於達 96%的預測精確度,而實際分析位移量在1)沿著Y軸方向位移,以及沿著 2) X/Z 軸進行旋轉移動的估測誤差分別約為0.00047 mm 與0.0038°/0.0018°。同時,該估測結果同樣適用於重建3D的超音波影像。 | zh_TW |
| dc.description.abstract | Ultrasound imaging is widely used in breast screening and often performed by the radiologist in free-hand operations. However, the examining results highly depend on the skills and experiences of operators. For full examinations, the ultrasound B mode images and the corresponding scanning path should be recorded. Utilizing a robotic system to assist scan or displacement tracking based on speckle pattern analysis are two possible solutions to providing the aforementioned information. However, it is difficult to achieve body-shape fitting and complex surface screening with the existing robotic scan system since only fixed path scanning is provided. On the other hand, the unreliable quality of the speckle pattern from soft tissues, which can be affected by tissue inhomogeneities and non-uniformly distributed scatterers in humane body, increases the difficulty of analyzing. To this end, the objectives of this study focused on providing better tracking approaches by improving the existing solutions. For the first and second part of this study, we proposed a robotic ultrasound scanning system which is able to adapt the linear and anti-radial scan path to perform conformal whole breast scan. In addition, the axillary area can also be scanned by the proposed system. A frame space of 0.76 mm can be achieved by the proposed system with both linear and radial conformal scanning. The proposed approaches were investigated using a breast phantom. Results show that 75 and 210 seconds were used to scan a rectangular region of 100 mm 50 mm and a circular region with a radius of 50 mm, respectively. Besides, 3D volumetric images can be reconstructed from the acquired B-mode images and the recorded position information. The third part of this study focused on improving the tracking accuracy in hand-held scan through speckle pattern analysis. The improvements include three parts 1) manufacturing a pad phantom with homogeneous distributed scatterers, 2) introducing an SVD-based method for feature extraction, and 3) using 2-layer neural network predictors for motion prediction. With the conventional approach using the speckle decorrelation curve for estimation, the estimated errors are too large to distinguish the types of motion and amount of displacement. By comparison with the proposed approach, the accuracy of motion prediction can reach 96% with training, and the estimated errors of elevational motion and rotational scan along X/Z axes are 0.00047 mm and 0.0038°/0.0018° respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:27:18Z (GMT). No. of bitstreams: 1 ntu-107-D00945001-1.pdf: 7914255 bytes, checksum: 998aa6053839577c04af03aaa3aaa8bb (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
Abstract ii 中文摘要 iii Chapter 1 INTRODUCTION 1 1.1 Breast tissue, cancer and medical image for screening 1 1.2 Speckle-based displacement estimation 2 1.3 Sensor-based 3D ultrasound system 2 1.4 Automatic breast ultrasound scan system 2 1.5 Advantage and drawback of the existing tracking systems 3 Chapter 2 DEVELOPING OF THE 3D ULTRASOUND FOR BREAST ULTRASOUND SCAN 4 2.1 Introduction 4 2.2 Platform of robot-arm assisting scan system 5 2.2.1 3D camera 5 2.2.2 6 DOF robot arm 5 2.2.3 Clinical ultrasound system and HDMI image capture card 6 2.2.4 Transducer holder 6 2.3 Experiment setup for speckle-based motion analysis 6 2.4 Clinical requirement 7 Chapter 3 SYSTEM DESIGN FOR LINEAR BREAST SCAN 8 3.1 Introduction 8 3.2 Spatial data processing algorithms 8 3.2.1 Bilateral filter 9 3.2.2 B-spline curve and 2D b-spline 10 3.3 Algorithms of linear path generation and normal vector estimation 11 3.3.1 Linear scan path determination 12 3.3.2 Principal component analysis (PCA) 12 3.3.3 Least squares (LS) for surface estimation 13 3.4 Coordinate transformation and calibration 14 3.4.1 Coordinate transformation 14 3.4.2 Coordinate calibration 16 3.5 Contact pressure compensation 18 3.5.1 Transducer holder design 18 3.5.2 Contact-pressure compensation 18 3.6 Results 19 3.6.1 Analysis of surface reconstruction 19 3.6.2 Analysis of normal vector estimation 20 3.6.3 Practical scan path generation 25 3.6.4 Stopping force analysis 26 3.6.5 Error analyzing of coordinate calibration 26 3.6.6 Scan speed vs. frame space 26 3.6.7 Scan results of practical conformal scan 27 3.7 Discussion 28 3.8 Summary 28 Chapter 4 SYSTEM DESIGN FOR ANTI-RADIAL BREAST SCAN 29 4.1 Introduction 29 4.2 Rotatable transducer holder for anti-radial scan 29 4.3 Anti-radial scan path determination 30 4.4 The modified 3D checkboard for coordinate calibration 31 4.5 Model-based scan path smoothening 31 4.5.1 1st order LS: 32 4.5.2 2nd order LS 33 4.6 Reconstruction of 3D ultrasound image 34 4.7 Results 35 4.7.1 Error analyzing of the 3D camera calibrations with modified checkboard 35 4.7.2 Normal vector smoothing 36 4.7.3 Visualization of the scan results and the reconstructed 3D ultrasound image By targeting on breast phantom, scanning with a speed of 5 mm/s, and recording the spatial information of each ultrasound image, a 3D alignment of scan result can be visualized as: 38 4.7.4 Path comparison of the anti-radial scan 39 4.8 Discussion 40 4.9 Summary 41 Chapter 5 IMPROVED OUT-OF-PLANE MOTION ESTIMATION WITH SINGULAR VALUE DECOMPOSITION AND MACHINE LEARNING 42 5.1 Introduction 42 5.1.1 The beam pattern in elevational direction and the decorrelation curve 42 5.2 Materials and methods 44 5.2.1 Phantom design 45 5.2.2 Ultrasound system 46 5.2.3 Singular value decomposition (SVD) 46 5.2.4 SVD for feature extraction and decorrelation curve 46 5.2.5 SVD for feature extraction and speckle pattern analysis 48 5.2.6 Neural network and the corresponding toolkit 48 5.2.7 Definitions of the scan type and illustration of overall procedure 50 5.3 Results 52 5.3.1 Comparison of beam patterns between depths 52 5.3.2 Comparison of decorrelation curves 53 5.3.3 Displacement estimation based on decorrelation curve at near-field region 53 5.3.4 Improvement of feature extraction via SVD method and decorrelation curve 54 5.3.5 Improvement of feature-extraction via SVD method and ultrasound image 55 5.3.6 Prediction of scan types 55 5.3.7 Prediction of displacement 57 5.3.8 Visualization of reconstruction through motion estimation 57 5.4 Discussion 59 5.5 Summary 61 Chapter 6 CONCLUSTION 62 6.1 Conclusion 62 6.2 Future Works 62 REFERENCES 65 PUBLICCATION LIST 67 | |
| dc.language.iso | en | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 相關係數-位移曲線 | zh_TW |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | 奇異值分析(SVD) | zh_TW |
| dc.subject | 立體影像重建 | zh_TW |
| dc.subject | 乳房檢查 | zh_TW |
| dc.subject | 超音波順行掃描 | zh_TW |
| dc.subject | decorrelation curve | en |
| dc.subject | Breast screening | en |
| dc.subject | ultrasound conformal scan | en |
| dc.subject | neural network | en |
| dc.subject | robotic arm | en |
| dc.subject | singular value decomposition (SVD) | en |
| dc.title | 順行掃描與自動追蹤之超音波系掃描在三維乳房檢查上的應用 | zh_TW |
| dc.title | Conformal Scanning and Automatic Tracking for 3D Breast Ultrasound | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 葉佳倫(Chia-Lun Yeh),沈哲州(Che-Chou Shen),謝寶育(Bao-Yu Hsieh),張瑞峰(Ruey-Feng Chang) | |
| dc.subject.keyword | 乳房檢查,超音波順行掃描,機械手臂,立體影像重建,奇異值分析(SVD),相關係數-位移曲線,類神經網路, | zh_TW |
| dc.subject.keyword | Breast screening,ultrasound conformal scan,robotic arm,singular value decomposition (SVD),decorrelation curve,neural network, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201803846 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
