請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72169完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 齊震宇(Chen-Yu Chi) | |
| dc.contributor.author | Tai-Hsuan Chung | en |
| dc.contributor.author | 鍾岱軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:26:53Z | - |
| dc.date.available | 2018-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | [1] K. Kodaira, On compact complex analytic surfaces I, Annals of Mathematics, Vol. 71 (1960), pp. 111-152.
[2] K. Kodaira, On compact complex analytic surfaces II, Annals of Mathematics, Vol. 77, No. 3 (May, 1963), pp. 563-626. [3] K. Kodaira, On compact complex analytic surfaces III, Annals of Mathematics, Vol. 78, No. 1 (Jul., 1963), pp. 1-40. [4] K.Kodaira, On the structure of compact complex analytic surfaces I, American Journal of Mathematics, Vol. 86 (1964), pp. 751-798. [5] W. L. Chow, On complex analytic varieties, American Journal of Mathematics, Vol. 71, No. 4 (Oct., 1949), pp. 893-914. [6] C.L.Siegel,Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten Nachr. Akad. Wiss. Göttingen. Math.–Phys. Kl., 4 (1955), pp. 71-77. [7] W.L.ChowandK.Kodaira, On analytic surfaces with two independent meromorphic functions, Proceedings of the National Academy of Sciences of the U. S. A., vol. 38 (1952), pp. 319-325. [8] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Mathematische Annalen, vol. 146 (1962), pp. 331-368. [9] W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, vol. 4. Springer, 2015. [10] M.F.AtiyahandF.Hirzebruch, Riemann-Roch theorems for differentiable manifolds. Bulletin of the American Mathematical Society, Volume65, Number 4 (1959), pp.276281. [11] Kenji Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Springer-Verlag Berlin·Heidelberg·New York 1975. [12] Daniel Huybrechts, Title: Complex Geometry, subtitle: An Introduction, SpringerVerlag Berlin Heidelberg, 2005. [13] Arnaud Beauville, Complex Algebraic Surfaces, Cambridge University Press, 1996. [14] Atiyah, M. F.; Singer, I. M. The index of elliptic operators on compact manifolds, Bulletin of the American Mathematical Society,vol. 69 (1963), no. 3, pp. 422-433. [15] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, Reprint of the 1978 Edition. [16] Allen Hatcher, Algebraic Topology, Cornell University, New York, February 2002. [17] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer-Verlag Berlin Heidelberg, 1984. [18] P.Griffiths and J.Harris, Principles of Algebraic Geometry, Wiley-Interscience,1994. [19] D. Mumford, The Canonical Ring of an Algebraic Surface, Annals of Mathematics, vol. 76, No.2, 1962, pp. 612-615. [20] J. Morrow and K. Kodaira, Complex Manifolds, AMS Chelsea Publishing, 1971. [21] 小平邦彦, 複素解析曲面論, 東京大学数学教室, 1974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72169 | - |
| dc.description.abstract | 代數曲面的分類可追朔到十九世紀末,其中由義大利代數幾何學派做了最主要的貢獻。到了1960年代,小平邦彥用近代複流形的語言推廣該分類,使之包含非代數的緊曲面。在此探討中,我們將詳細地了解緊複曲面的小平邦彥分類。 | zh_TW |
| dc.description.abstract | The classification of algebraic surfaces dates back to the late 19th century when the Italian school of algebraic geometry made major contributions. Then in the 1960s, Kunihiko Kodaira extended this classification using the modern language of complex manifolds to include non-algebraic compact surfaces. In this survey, we investigate on Kodaira's classification of compact complex surfaces. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:26:53Z (GMT). No. of bitstreams: 1 ntu-107-R05221014-1.pdf: 651326 bytes, checksum: 25bcdfa77a3409026ea1f6fa9880349f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書, i
謝辭, ii 中文摘要, iii Abstract, iv 1 Introduction, 1 2 Preliminary, 2 3 Numerical Characters, 7 4 Types of Surfaces, 11 5 A Brief Introduction to Albanese Varieties, 15 6 Surfaces Free From (-1)-curve, 18 7 Main Theorems, 33 Appendix, 43 Reference, 49 | |
| dc.language.iso | en | |
| dc.subject | 分類 | zh_TW |
| dc.subject | 複曲面 | zh_TW |
| dc.subject | 代數曲面 | zh_TW |
| dc.subject | complex surface | en |
| dc.subject | algebraic surface | en |
| dc.subject | classification. | en |
| dc.title | 緊複曲面的小平邦彥分類之探討 | zh_TW |
| dc.title | A Detailed Survey on the Kodaira Classification of Compact Complex Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王金龍(Chin-Lung Wang),莊武諺(Wu-Yen Chuang) | |
| dc.subject.keyword | 複曲面,代數曲面,分類, | zh_TW |
| dc.subject.keyword | complex surface,algebraic surface,classification., | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201803920 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 636.06 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
