請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72143
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭仁傑 | |
dc.contributor.author | Ching-Chun Cheng | en |
dc.contributor.author | 鄭敬錞 | zh_TW |
dc.date.accessioned | 2021-06-17T06:25:32Z | - |
dc.date.available | 2018-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-17 | |
dc.identifier.citation | Allard MW, Miyamoto MM, Bjorndal KA, Bolten AB, Bowen BW (1994) Support for natal homing in green turtles from mitochondrial DNA sequences. Copeia, 34-41.
Aranda G, Abascal FJ, Varela JL, Medina A (2013) Spawning behaviour and post-spawning migration patterns of Atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS One, 8(10): e76445. Bayliff WH (1994) A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fisheries Technical Paper (FAO). Available at: http://www.fao.org/docrep/005/T1817E/T1817E13.htm. Accessed 26 May 2018. Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Marine Ecology Progress Series, 268: 245-264. Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, Weng KC, Dewar H, Williams TD (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature, 434: 1121-1127. Boustany AM, Matteson R, Castleton M, Farwell C, Block BA (2010) Movements of pacific bluefin tuna (Thunnus orientalis) in the Eastern North Pacific revealed with archival tags. Progress in Oceanography, 86(1-2): 94-104. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5): 1014-1032. Carlisle AB, Goldman KJ, Litvin SY, Madigan DJ, Bigman JS, Swithenbank AM, Thomas CK, Block BA (2015) Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proceedings of the Royal Society of London B: Biological Sciences, 282(1799): 20141446. Chamberlin ME, Glemet HC, Ballantyne JS (1991) Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 260(1): 159-166. Chang N, Liu E, Liao Y, Shiao J (2015) Vertical habitat shift of viviparous and oviparous deep‐sea cusk eels revealed by otolith microstructure and stable‐isotope composition. Journal of Fish Biology, 86.2: 845-853. Chen KS, Crone P, HSU CC (2006) Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south‐western North Pacific Ocean. Fisheries Science, 72(5): 985-994. Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ (2014) Inferring movement patterns of a coral reef fish using oxygen and carbon isotopes in otolith carbonate. Journal of Experimental Marine Biology and Ecology, 456: 18-25. Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Marine Biology, 2(2):105-113. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42:495-506. Foreman TJ (1990) Giant bluefin off Southern California, with a new California size record. California fish and game, 76:181-186. Fridriksson, A. (1934) On the calculation of age-distribution within a stock of cod by means of relatively few age-determinations as a key to measurements on a large scale. Rapports et Proces-Verbaux des Reunions, Conseil International Pour Exploration de la Mer, 86: 1-5. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography, 33: 1182-1190. Fujioka K, Masujima M, Boustany AM, Kitagawa T (2015) Horizontal movements of Pacific bluefin tuna. In: Kitagawa T, Kimura S (eds) Biology and ecology of bluefin tuna, CRC Press, Boca Raton, U.S.A., p 101-122. Gao Y, Dettman DL, Piner KR, Wallace FR (2010) Isotopic correlation (δ18O versus δ13C) of otoliths in identification of groundfish stocks. Transactions of the American Fisheries Society, 139: 491-501. George JC, Stevens ED (1978) Fine structure and metabolic adaptation of red and white muscles in tuna. Environmental Biology of Fishes, 3(2): 185-191. Goldstein J, Heppell S, Cooper A, Brault S, Lutcavage M (2007) Reproductive status and body condition of Atlantic Bluefin tuna in the Gulf of Maine, 2000-2002. Marine Biology, 151: 2063-2075. Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Marine Biology, 150(4): 647-658. Hansson S, Hobbie JE, Elmgren R, Larsson U, Fry B, Johansson S (1997) The stable nitrogen isotope ratio as a marker of food‐web interactions and fish migration. Ecology, 78(7): 2249-2257. Hesslein RH, Capel MJ, Fox DE, Hallard KA (1991) Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 48(11): 2258-2265. Hsu CC, Liu HC, Wu CL, Huang ST, Liao HK (2000) New information on age composition and length-weight relationship of bluefin tuna, Thunnus thynnus, in the southwestern North Pacific. Fisheries science, 66(3): 485-493. Inagake D, Yamada H, Segawa K, Okazaki M, Nitta A, Itoh T (2001) Migration of young bluefin tuna, Thunnus orientalis Temminck et Schlegel, through archival tagging experiments and its relation with oceanographic conditions in the western north Pacific. Bulletin-National Research Institute of Far Seas Fisheries, 38: 53-81. ISC. (2016) Report of the pacific bluefin tuna working group workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, 29 February-11 March 2016, La Jolla, USA. Itoh T, Tsuji S, Nitta A (2003) Migration patterns of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fishery Bulletin, 101(3): 514-534. Kimura DK (1977) Statistical assessment of the age–length key. Journal of the Fisheries Board of Canada, 34(3): 317-324. Kitagawa T, Fujioka K (2017) Rapid ontogenetic shift in juvenile Pacific bluefin tuna diet. Marine Ecology Progress Series, 571: 253-257. Kitagawa T, Kimura S, Nakata H, Yamada H (2004) Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio-Oyashio transition region. Fisheries Oceanography, 13(3): 161-180. Kitagawa T, Kimura S, Nakata H, Yamada H (2007) Why do young Pacific bluefin tuna repeatedly dive to depths through the thermocline? Fish Science, 73: 98-106. Kitagawa T, Nakata H, Kimura S, Itoh T, Tsuji S, Nitta A (2001) Effect of ambient temperature on the vertical distribution and movement of Pacific bluefin tuna Thunnus thynnus orientalis. Marine Biology, 206: 251-260. Lehodey P, Chai F, Hampton J (2003) Modelling climate‐related variability of tuna populations from a coupled ocean‐biogeochemical‐populations dynamics model. Fisheries Oceanography, 12(4‐5): 483-494. Liu KK, Kaplan IR (1989) The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnology and Oceanography, 34: 820-830. Liu KK, Su MJ, Hsueh CR, Gong GC (1996) The nitrogen isotopic composition of nitrate in the Kuroshio Water northeast of Taiwan: Evidence for nitrogen fixation as a source of isotopically light nitrate. Marine Chemistry, 54(3-4): 273-292. Madigan D J, Litvin SY, Popp BN, Carlisle AB, Farwell CJ, Block BA (2012b) Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS One, 7(11): e49220. Madigan DJ, Baumann Z, Carlisle AB, Hoen, DK, Popp BN, Dewar H, Snodgrass OE, Block BA, Fisher NS (2014) Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology, 95(6): 1674-1683. Madigan DJ, Carlisle AB, Dewar H, Snodgrass OE, Litvin SY, Micheli F, Block BA (2012a) Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Scientific reports, 2: 654. Madigan DJ, Chiang WC, Wallsgrove NJ, Popp BN, Kitagawa T, Choy CA, Tallmon J, Ahmed N, Fisher NS, Sun CL (2016) Intrinsic tracers reveal recent foraging ecology of giant Pacific bluefin tuna at their primary spawning grounds. Marine Ecology Progress Series, 553:253-266. Minegawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48: 1135-1140. Navarro J, Coll M, Somes CJ, Olson RJ (2013) Trophic niche of squids: insights from isotopic data in marine systems worldwide. Deep Sea Research Part II: Topical Studies in Oceanography, 95: 93-102. Ohshimo S, Tanaka H, Nishiuchi K, Yasuda T (2016) Trophic positions and predator-prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan. Marine and Freshwater Research, 67(11): 1692-1699. Ohta I, Yamada H (2015) Formation of a pacific bluefin tuna fishing ground on their spawning grounds around the Ryukya Islands. In: Kitagawa T, Kimura S (eds) Biology and ecology of bluefin tuna. CRC Press, Boca Raton, U.S.A., p 123-136. Okochi Y, Abe O, Tanaka S, Ishihara Y, Shimizu A (2016) Reproductive biology of female Pacific bluefin tuna, Thunnus orientalis, in the Sea of Japan. Fisheries Research, 174: 30-39. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annual review of ecology and systematics, 18: 293-320. Pinkas L, Oliphant MS, Iverson ILK (1971) Food habits of albacore, bluefin tuna and bonito in Californian waters. California Department of Fish and Game: Fish Bulletin, 152: 1-105. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology, 83: 703–718. Quinn TP, Volk EC, Hendry AP (1999) Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (Oncorhynchus nerka). Canadian Journal of Zoology, 77(5): 766-775. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Rhodes KL, McIlwain J, Joseph E, Nemeth RS (2012) Reproductive movement, residency and fisheries vulnerability of brown-marbled grouper, Epinephelus fuscoguttatus (Forsskål, 1775). Coral Reefs, 31(2): 443-453. Robichaud D, Rose GA (2003) Sex differences in cod residency on a spawning ground. Fisheries Research, 60(1): 33-43. Rooker JR, Secor DH, DeMetrio G, Schloesser R, Block BA, Neilson JD (2008) Natal homing and connectivity in Atlantic bluefin tuna populations. Science, 322(5902): 742-744. Sardenne F, Ménard F, Degroote M, Fouché E, Guillou G, Lebreton B, Hollanda SJ, Bodin N (2015) Methods of lipid‐normalization for multi‐tissue stable isotope analyses in tropical tuna. Rapid Communications in Mass Spectrometry, 29(13): 1253-1267. Schaefer KM (1987) Reproductive biology of black skipjack, Euthynnus lineatus, an eastern Pacific tuna. Inter-American Tropical Tuna Commission Bulletin, 19(2): 166-260. Schaefer KM (1996) Spawning time, frequency, and batch fecundity of yellowfin tuna, Thunnus albacares, near Clipperton Atoll in the eastern Pacific Ocean. Fish Bull, 94: 98-112. Shiao JC, Lu HB, Hsu J, Wang HY, Chang SK, Huang MY, Ishihara T (2017) Changes in size, age, and sex ratio composition of Pacific bluefin tuna (Thunnus orientalis) on the northwestern Pacific Ocean spawning grounds. ICES Journal of Marine Science, 74(1): 204-214. Shiao JC, Wang SW, Yokawa K, Ichinokawa M, Takeuchi Y, Chen YG, Shen CC (2010) Natal origin of Pacific bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition. Marine Ecology Progress Series, 420: 207-219. Shimose T, Ishihara T (2015) A manual for age determination of Pacific bluefin tuna Thunnus orientalis. Bulletin of Fisheries Research Agency, 40: 1-11. Shimose T, Tanabe T, Chen KS, Hsu CC (2009) Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fisheries Research, 100(2): 134-139. Shimose T, Watanabe H, Tanabe T, Kubodera T (2013) Ontogenetic diet shift of age‐0 year Pacific bluefin tuna Thunnus orientalis. Journal of fish biology, 82(1): 263-276. Shimose T, Yokawa K, Saito H, Tachihara K (2012) Sexual difference in the migration pattern of blue marlin, Makaira nigricans, related to spawning and feeding activities in the western and central North Pacific Ocean. Bulletin of Marine Science, 88(2): 231-249. Smith PJ, Griggs L, Chow S (2001) DNA identification of Pacific bluefin tuna (Thunnus orientalis) in the New Zealand fishery. New Zealand Journal of Marine and Freshwater Research, 35(4): 843-850. Solomon CT, Weber PK, Cech JJ, Jr., Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences, 63: 79-89. Svedäng H, Righton D, Jonsson P (2007) Migratory behaviour of Atlantic cod Gadus morhua: natal homing is the prime stock-separating mechanism. Marine Ecology Progress Series, 345: 1-12. Tanaka Y, Mohri M, Yamada H (2007) Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thunnus orientalis in the coastal area of the Sea of Japan. Fisheries Science, 73(3): 534-542. Tanaka Y, Satoh K, Iwahashi M, Yamada H (2006) Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Marine Ecology Progress Series, 319: 225-235. Tawa A, Ishihara T, Uematsu Y, Ono T, Ohshimo S (2017) Evidence of westward transoceanic migration of Pacific bluefin tuna in the Sea of Japan based on stable isotope analysis. Marine Biology, 164(4): 94. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 61(14): 2909-2919. Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws. II). Human biology, 10(2): 181-213. Wild A (1986). Growth of yellowfin tuna, Thunnus albacares, in the eastern Pacific Ocean based on otolith increments. Inter-American Tropical Tuna Commission Bulletin, 18(6): 421-482. Yamada H, Takagi N, Nishimura D (2006) Recruitment abundance index of Pacific bluefin tuna using fisheries data on juveniles. Fisheries Science, 72(2): 333-341. Yoneda M and Wright PJ (2005) Effect of temperature and food availability on reproductive investment of first-time spawning male Atlantic cod, Gadus morhua. ICES Journal of Marine Science, 62(7): 1387-1393. 呂翰駮(2015)耳石穩定性同位素與年齡探討太平洋黑鮪的年齡與成長以及其來源,國立臺灣大學理學院海洋研究所,碩士論文,共84頁。 許蓁(2017)臺灣近海黑鮪族群變異與耳石抽樣策略之應用,國立臺灣大學生命科學院漁業科學研究所,碩士論文,共72頁。 謝瑀(2017)以穩定性同位素分析解析七星鱸魚之棲地利用與辨識養殖和野生個體,國立臺灣大學理學院海洋研究所,碩士論文,共106頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72143 | - |
dc.description.abstract | 太平洋黑鮪(Thunnus orientalis)洄游於太平洋東西岸與日本海,為我國近海重要的漁獲對象,近年來因族群量下降,造成漁獲量銳減。黑鮪的年齡與成長是評估其漁業資源的必要生物參數,因此本研究利用漁業資料與耳石估計黑鮪的年齡和成長,另外也分析耳石與肌肉穩定性同位素,以探討台灣附近海域的黑鮪洄游動態。結果顯示,在台灣附近海域,2016和2017年主要以5-15歲年輕的個體佔產卵系群的多數(約78%),耳石穩定性氧同位素顯示西北太平洋產卵場之產卵群體大部分孵化於西北太平洋海域(87%),少部分孵化於日本海(13%),且肌肉穩定性氮同位素顯示這些產卵群體在產卵季前,極少數由太平洋東岸攝食場直接進入西北太平洋產卵場繁殖(7%),大部分是來自其他海域,例如西北太平洋溫帶海域的覓食場。這些產卵群體在4-7月產卵季平均體長逐漸上升,大型個體(≥ 230公分)相較於小型個體有較長的出現時間(< 200公分),然而雌雄比例在出現時間長短上並沒有差異。2013年以來,年輕個體逐漸加入產卵群體,並在2015年後對於我國黑鮪漁獲量有很重要的貢獻度。年輕個體因為擁有相對長的繁殖壽命,取代年邁的個體對於資源的延續有良好的發展,太平洋黑鮪的管理措施著重在減少0-1歲幼魚的死亡率,預期5-6年後,將會有更多的年輕成熟個體加入到西北太平洋產卵場。 | zh_TW |
dc.description.abstract | Pacific bluefin tuna (Thunnus orientalis, PBF) is an economically important species in Taiwanese fisheries. The total landing of PBF has been largely decreased suggesting the decline of the population size in the recent year. The age and size composition are important information for fishery management of the fish. Therefore, this study aimed to estimate the age composition and growth of the PBF by reading otolith annuli. In addition, stable isotopes of otoliths and muscles were analyzed to infer the natal origin and nursery grounds before the spawning seasons, respectively. The results showed that the PBF landing in Taiwan were consisted of the younger individuals aged 5 to 15 years (78%) and the elder fish aged 16-29 years (22%) in 2016 and 2017. Most individuals spawning in the northwest Pacific spawning grounds were hatched in the northwest Pacific Ocean (87%) and fewer individuals were hatched in the Sea of Japan (13%). Very few spawning adults (7%) migrated directly from the feeding grounds in eastern Pacific Ocean to the northwest Pacific spawning grounds while most of spawning adults might migrate from the feeding grounds in the northwest Pacific Ocean, such as Japanese waters. The mean length of adult PBF gradually increased from April to July and individuals with larger size (≥ 230 cm) have longer occurrence in the spawning grounds than the fish of small size (< 200 cm). The sex ratio did not differ druing April to July. The results suggested that younger spawners have higher contribution to the spawning stock since 2013 and the year class of 2007-2008 will continue to reproduce for more a decade. The current fishery management is to reduce the fishing mortablity of the PBF aged 0-1 year. It is expected that more young adults will join the spawning groups in the northwestern Pacific Ocean in 5-6 years. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:25:32Z (GMT). No. of bitstreams: 1 ntu-107-R05241201-1.pdf: 5015436 bytes, checksum: a1d14e8738b7d0af3e0e552754b404dc (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iii 目錄 iv 表格目錄 vii 圖目錄 8 附錄目錄 10 壹、前言 11 1.1太平洋黑鮪生活史 11 1.2漁業現況 12 1.3太平洋黑鮪之資源評估與管理概況 12 1.4耳石的研究與應用 13 1.5代謝性組織的穩定性同位素分析 15 1.6產卵系群的組成變化 16 1.7研究動機和目的 16 貳、材料方法 18 2.1年齡和成長 18 2.1.1耳石樣本製備 18 2.1.2耳石定齡分析 18 2.1.3年齡體長換算表 19 2.1.4成長方程式 20 2.2耳石穩定性碳、氧同位素分析 21 2.3肌肉穩定性碳、氮同位素分析 22 2.3.1樣本製備和分析 22 2.3.2群集分析 23 2.4漁獲資料分析 23 叁、結果 25 3.1年齡與成長 25 3.1.1體長分布 25 3.1.2耳石定齡的精準度 25 3.1.3年齡分布 26 3.1.4年齡體長換算表 26 3.1.5成長方程式 26 3.2太平洋黑鮪之出生地判別 27 3.3 產卵前攝食場來源 28 3.3.1穩定性碳、氮同位素 28 3.3.2群集分析 28 3.4太平洋黑鮪產卵系群的組成變動 29 3.4.1尾叉長組成之年度變動 29 3.4.2各年度內尾叉長組成之月份變動 29 3.4.3產卵期性別比變動 30 肆、討論 31 4.1 年齡與成長 31 4.1.1年齡判讀精確度 31 4.1.2 Age-Length Key之可能誤差 31 4.1.3年齡組成 32 4.1.4 成長動態 33 4.2黑鮪之出生地判別 34 4.3 產卵前攝食場來源 36 4.3.1 東西岸餌料生物的同位素值差異 36 4.3.2台灣附近海域黑鮪攝食場來源 37 4.3.3個體食性轉變 38 4.3.4群集分析結果 39 4.4 台灣所捕獲黑鮪受各國漁業影響程度 40 4.5 產卵系群之組成變動 41 4.5.1產卵期之體長變動 41 4.5.2產卵期之性比變動 41 伍、結論 43 參考文獻 44 | |
dc.language.iso | zh-TW | |
dc.title | 太平洋黑鮪成魚於西北太平洋產卵場之族群動態 | zh_TW |
dc.title | Population dynamics of adult Pacific bluefin tuna(Thunnus orientalis) in the northwestern Pacific spawning grounds | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉信明,藍國瑋,王慧瑜 | |
dc.subject.keyword | 太平洋黑鮪,年齡組成,穩定性同位素,產卵場來源, | zh_TW |
dc.subject.keyword | Pacific bluefin tuna,age composition,stable isotopes,natal origin, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201803635 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。