Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王慧瑜
dc.contributor.authorWen-Chieh Sungen
dc.contributor.author宋文傑zh_TW
dc.date.accessioned2021-06-17T06:25:23Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citationReferences:
Adams, P. B. (1980). Life history patterns in marine fishes and their consequences for fisheries management. Fishery Bulletin, 78(1), 1-12.
Allsop, D. J., & West, S. A. (2003). Constant relative age and size at sex change for sequentially hermaphroditic fish. Journal of Evolutionary Biology, 16(5), 921-929.
Alonzo, S. H., & Mangel, M. (2005). Sex-change rules, stock dynamics, and the performance of spawning-per-recruit measures in protogynous stocks. Fishery Bulletin, 103(2), 229-245.
Alonzo, S. H., Ish, T., Key, M., MacCall, A. D., & Mangel, M. (2008). The importance of incorporating protogynous sex change into stock assessments. Bulletin of Marine Science, 83(1), 163-179.
Armsworth, P. R. (2001). Effects of fishing on a protogynous hermaphrodite. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 568-578.
Aswani, S., & Sabetian, A. (2010). Implications of urbanization for artisanal parrotfish fisheries in the Western Solomon Islands. Conservation Biology, 24(2), 520-530.
Ault, J. S., Smith, S. G., & Bohnsack, J. A. (2005). Evaluation of average length as an estimator of exploitation status for the Florida coral-reef fish community. ICES Journal of marine Science, 62(3), 417-423.
Ault, J. S., Smith, S. G., Luo, J., Monaco, M. E., & Appeldoorn, R. S. (2008). Length-based assessment of sustainability benchmarks for coral reef fishes in Puerto Rico. Environmental Conservation, 35(3), 221-231.
Avise, J. C., & Mank, J. E. (2009). Evolutionary perspectives on hermaphroditism in fishes. Sexual Development, 3(2-3), 152-163.
Booth, L. (2017). Identifying Conservation Strategies for Group-Spawning Coral Reef Fish in the Indo-Pacific, Using a Case Study of a Protogynous Giant Wrasse. Consilience, (17), 33-45.
Botsford, L. W. (1997). Dynamics of populations with density-dependent recruitment and age structure. In Structured-Population Models in Marine, Terrestrial, and Freshwater Systems (pp. 371-408). Springer, Boston, MA.
Brooks, E. N., Shertzer, K. W., Gedamke, T., & Vaughan, D. S. (2008). Stock assessment of protogynous fish: evaluating measures of spawning biomass used to estimate biological reference points. Fishery Bulletin, 106(1), 12-23.
Butterworth, D. S., Rademeyer, R. A., Brandão, A., Geromont, H. F., & Johnston, S. J. (2014). Does selectivity matter? A fisheries management perspective. Fisheries research, 158, 194-204.
Caselle, J. E., Hamilton, S. L., Schroeder, D. M., Love, M. S., Standish, J. D., Rosales-Casian, J. A., & Sosa-Nishizaki, O. (2011). Geographic variation in density, demography, and life history traits of a harvested, sex-changing, temperate reef fish. Canadian Journal of Fisheries and Aquatic Sciences, 68(2), 288-303.
Cesar, H., Burke, L., & Pet-Soede, L. (2003). The economics of worldwide coral reef degradation. Cesar environmental economics consulting (CEEC).
Chang, Y. J., Sun, C. L., CheN, Y., Yeh, S. Z., & Chiang, W. C. (2009). Incorporating uncertainty into the estimation of biological reference points for a spiny lobster (Panulirus penicillatus) fishery. New Zealand Journal of Marine and Freshwater Research, 43(1), 429-442.
Claudet, J., Osenberg, C. W., Domenici, P., Badalamenti, F., Milazzo, M., Falcón, J. M., ... & Borg, J. A. (2010). Marine reserves: fish life history and ecological traits matter. Ecological applications, 20(3), 830-839.
Coleman, F. C., Koenig, C. C., Huntsman, G. R., Musick, J. A., Eklund, A. M., McGovern, J. C., ... & Grimes, C. B. (2000). Long‐lived reef fishes: the grouper‐snapper complex. Fisheries, 25(3), 14-21.
Cuetos-Bueno, J., & Houk, P. (2015). Re-estimation and synthesis of coral-reef fishery landings in the Commonwealth of the Northern Mariana Islands since the 1950s suggests the decline of a common resource. Reviews in fish biology and fisheries, 25(1), 179-194.
De Mitcheson, Y. S., & Liu, M. (2008). Functional hermaphroditism in teleosts. Fish and Fisheries, 9(1), 1-43.
Denney, N. H., Jennings, S., & Reynolds, J. D. (2002). Life–history correlates of maximum population growth rates in marine fishes. Proceedings of the Royal Society of London B: Biological Sciences, 269(1506), 2229-2237.
Dulvy, N. K., & Polunin, N. V. (2004). Using informal knowledge to infer human-induced rarity of a conspicuous reef fish. In Animal Conservation forum (Vol. 7, No. 4, pp. 365-374). Cambridge University Press.
Easter, E. E., & White, J. W. (2016). Spatial management for protogynous sex-changing fishes: a general framework for coastal systems. Marine Ecology Progress Series, 543, 223-240.
Ellis, R. D., & Powers, J. E. (2012). Gag grouper, marine reserves, and density-dependent sex change in the Gulf of Mexico. Fisheries Research, 115, 89-98.
Fraser, D. J., Weir, L. K., Bernatchez, L., Hansen, M. M., & Taylor, E. B. (2011). Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity, 106(3), 404.
Gislason, H., Daan, N., Rice, J. C., & Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11(2), 149-158.
Goodyear, C. P. (1993). Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Special Publication of Fisheries and Aquatic Sciences, 67-82.
He, J. X., & Stewart, D. J. (2001). Age and size at first reproduction of fishes: predictive models based only on growth trajectories. Ecology, 82(3), 784-791.
Heppell, S. S., Heppell, S. A., Read, A. J., & Crowder, L. B. (2005). Effects of fishing on long-lived marine organisms. Marine conservation biology: the science of maintaining the sea’s biodiversity. Island Press, Washington, DC, 211-231.
Heppell, S. S., Heppell, S. A., Coleman, F. C., & Koenig, C. C. (2006). Models to compare management options for a protogynous fish. Ecological Applications, 16(1), 238-249.
Hsieh, C. H., Reiss, C. S., Hunter, J. R., Beddington, J. R., May, R. M., & Sugihara, G. (2006). Fishing elevates variability in the abundance of exploited species. Nature, 443(7113), 859.
Huntsman, G. R., & Schaaf, W. E. (1994). Simulation of the impact of fishing on reproduction of a protogynous grouper, the graysby. North American Journal of Fisheries Management, 14(1), 41-52.
Jennings, S., Reynolds, J. D., & Mills, S. C. (1998). Life history correlates of responses to fisheries exploitation. Proceedings of the Royal Society of London B: Biological Sciences, 265(1393), 333-339.
Jennings, S., Greenstreet, S. P., & Reynolds, J. D. (1999a). Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. Journal of Animal Ecology, 68(3), 617-627.
Jennings, S., Reynolds, J. D., & Polunin, N. V. (1999b). Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories. Conservation biology, 13(6), 1466-1475.
Johannes, R. E. (1998). The case for data-less marine resource management: examples from tropical nearshore finfisheries. Trends in Ecology & Evolution, 13(6), 243-246.
Juan-Jordá, M. J., Mosqueira, I., Freire, J., & Dulvy, N. K. (2015). Population declines of tuna and relatives depend on their speed of life. Proc. R. Soc. B, 282(1811), 20150322.
Kenchington, T. J. (2014). Natural mortality estimators for information‐limited fisheries. Fish and Fisheries, 15(4), 533-562.
Kindsvater, H. K., Mangel, M., Reynolds, J. D., & Dulvy, N. K. (2016). Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and Evolution, 6(7), 2125-2138.
King, J. R., & McFarlane, G. A. (2003). Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology, 10(4), 249-264.
Le Quesne, W. J., & Jennings, S. (2012). Predicting species vulnerability with minimal data to support rapid risk assessment of fishing impacts on biodiversity. Journal of Applied Ecology, 49(1), 20.
Mace, P. M., & Sissenwine, M. P. (1993). How much spawning per recruit is enough?. Canadian Special Publication of Fisheries and Aquatic Sciences, 101-118.
Mace, P. M. (1994). Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Canadian Journal of Fisheries and Aquatic Sciences, 51(1), 110-122.
Manooch, C. S., Potts, J. C., Burton, M. L., & Harris, P. J. (1998). Population assessment of the scamp, Mycteroperca phenax, from the southeastern United States.
Marconato, A., Shapiro, D. Y., Petersen, C. W., Warner, R. R., & Yoshikawa, T. (1997). Methodological analysis of fertilization rate in the bluehead wrasse Thalassoma bifasciatum: pair versus group spawns. Marine Ecology Progress Series, 61-70.
McGovern, J. C., Wyanski, D. M., Pashuk, O., Manooch, C. S., & Sedberry, G. R. (1998). Changes in the sex ratio and size at maturity of gag, Mycteroperca microlepis, from the Atlantic coast of the southeastern United States. Fishery Bulletin, 96(4), 797-807.
Molloy, P. P., McLean, I. B., & Côté, I. M. (2009). Effects of marine reserve age on fish populations: a global meta‐analysis. Journal of applied Ecology, 46(4), 743-751.
Nadon, M. O. (2016). Stock assessment of the coral reef fishes of Hawaii, 2016. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center.
Paddack, M. J., Reynolds, J. D., Aguilar, C., Appeldoorn, R. S., Beets, J., Burkett, E. W., ... & Forrester, G. E. (2009). Recent region-wide declines in Caribbean reef fish abundance. Current Biology, 19(7), 590-595.
Provost, M. M., & Jensen, O. P. (2015). The impacts of fishing on hermaphoditic and treatment of sex change in stock assessments. Fisheries, 40(11), 536-545.
Rhodes, K. L., & Tupper, M. H. (2008). The vulnerability of reproductively active squaretail coralgrouper (Plectropomus areolatus) to fishing.
Robinson, O. J., Jensen, O. P., Provost, M. M., Huang, S., Fefferman, N. H., Kebir, A., & Lockwood, J. L. (2017). Evaluating the impacts of fishing on sex-changing fish: a game-theoretic approach. ICES Journal of Marine Science, 74(3), 652-659.
Russ, G. R., & Alcala, A. C. (1989). Effects of intense fishing pressure on an assemblage of coral reef fishes. Marine Ecology Progress Series, 13-27.
Sadovy, Y. (2001). The threat of fishing to highly fecund fishes. Journal of Fish Biology, 59, 90-108.
Sadovy de Mitcheson, Y., Craig, M. T., Bertoncini, A. A., Carpenter, K. E., Cheung, W. W., Choat, J. H., ... & Liu, M. (2013). Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish and fisheries, 14(2), 119-136.
Sethi, S. A., & Hilborn, R. (2008). Interactions between poaching and management policy affect marine reserves as conservation tools. Biological Conservation, 141(2), 506-516.
Shapiro, D. Y., Marconato, A., & Yoshikawa, T. (1994). Sperm economy in a coral reef fish, Thalassoma bifasciatum. Ecology, 75(5), 1334-1344.
Taylor, B. M., Houk, P., Russ, G. R., & Choat, J. H. (2014). Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs, 33(4), 869-878.
Thorson, J. T., Cope, J. M., Branch, T. A., & Jensen, O. P. (2012). Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Canadian Journal of Fisheries and Aquatic Sciences, 69(9), 1556-1568.
Trip, E. L., Choat, J. H., Wilson, D. T., & Robertson, D. R. (2008). Inter-oceanic analysis of demographic variation in a widely distributed Indo-Pacific coral reef fish. Marine Ecology Progress Series, 373, 97-109.
Trip, E. D., Clements, K. D., Raubenheimer, D., & Choat, J. H. (2014). Temperature‐related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. journal of animal ecology, 83(4), 866-875.
Wang, H. Y., Botsford, L. W., White, J. W., Fogarty, M. J., Juanes, F., Hastings, A., ... & Brander, K. (2014). Effects of temperature on life history set the sensitivity to fishing in Atlantic cod Gadus morhua. Marine Ecology Progress Series, 514, 217-229.
Warner, R. R. (1984). Mating behavior and hermaphroditism in coral reef fishes. American Scientist, 72(2), 128-136.
Wiedmann, M. A., Primicerio, R., Dolgov, A., Ottesen, C. A., & Aschan, M. (2014). Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment. Ecology and evolution, 4(18), 3596-3611.
Williams, A. J., Loeun, K., Nicol, S. J., Chavance, P., Ducrocq, M., Harley, S. J., ... & Bradshaw, C. J. A. (2013). Population biology and vulnerability to fishing of deep‐water Eteline snappers. Journal of Applied Ichthyology, 29(2), 395-403.
Wootton, R. J., & Smith, C. (2014). Reproductive biology of teleost fishes. John Wiley & Sons.
Zhou, S., Yin, S., Thorson, J. T., Smith, A. D., & Fuller, M. (2012). Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 1292-1301.
References for Appendix I:
1.Andrade Rodriguez, H. A. (2003). Age determination in the snapper Lutjanus guttatus (Pisces, Lutjanidae) and investigation of fishery management strategies in the Pacific Coast of Guatemala (Master's thesis, Universitetet i Tromsø).
2.Bade, T. M. (1989). Aspects of the biology of grunts (Teleostei: Haemulidae) from north Queensland waters (Doctoral dissertation, James Cook University).
3.Bobko, S. J., & Berkeley, S. A. (2004). Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fishery Bulletin, 102(3), 418-429.
4.Bos, A. R., Gumanao, G. S., & Silvosa, M. (2018). Twenty‐eight additions to the length‐weight and length‐length relationships of Indo‐Pacific fishes from the Davao Gulf, Philippines. Journal of Applied Ichthyology, 34(1), 185-189.
5.Caselle, J. E., Hamilton, S. L., Schroeder, D. M., Love, M. S., Standish, J. D., Rosales-Casian, J. A., & Sosa-Nishizaki, O. (2011). Geographic variation in density, demography, and life history traits of a harvested, sex-changing, temperate reef fish. Canadian Journal of Fisheries and Aquatic Sciences, 68(2), 288-303.
6.Choat, J. H., & Robertson, D. R. (2002). Age-based studies. Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, California, USA, 57-80.
7.Choat, J., Clements, K., & Robbins, W. (2002). The trophic status of herbivorous fishes on coral reefs. Marine Biology, 140(3), 613-623.
8.Conand, F. (1991). Biology and phenology of Amblygaster sirm (Clupeidae) in New Caledonia, a sardine of the coral environment. Bulletin of marine science, 48(1), 137-149.
9.Cuetos‐Bueno, J., & Hernandez‐Ortiz, D. (2017). Length–weight relationships of six coral reef‐fish species from Chuuk, Federated States of Micronesia. Journal of applied ichthyology, 33(3), 645-646.
10.DeMartini, E. E., Andrews, A. H., Howard, K. G., Taylor, B. M., Lou, D. C., & Donovan, M. K. (2017). Comparative growth, age at maturity and sex change, and longevity of Hawaiian parrotfishes, with bomb radiocarbon validation. Canadian Journal of Fisheries and Aquatic Sciences, (999), 1-10.
11.Ebisawa, A. (2013). Life history traits of leopard coralgrouper Plectropomus leopardus in the Okinawa Islands, southwestern Japan. Fisheries science, 79(6), 911-921.
12.Ebisawa, A., & Ozawa, T. (2009). Life-history traits of eight Lethrinus species from two local populations in waters off the Ryukyu Islands. Fisheries Science, 75(3), 553-566.
13.Ebisawa, A., Kanashiro, K., & Kiyan, T. (2010). Growth, sex ratio, and maturation rate with age in the blackspot tuskfish Choerodon schoenleinii in waters off Okinawa Island, southwestern Japan. Fisheries Science, 76(4), 577-583.
14.Erisman, B. E., Craig, M. T., & Hastings, P. A. (2010). Reproductive biology of the Panama graysby Cephalopholis panamensis (Teleostei: Epinephelidae). Journal of fish biology, 76(6), 1312-1328.
15.Fairclough, D. (2005). The biology of four tuskfish species (Choerodon: Labridae) in Western Australia (Doctoral dissertation, Murdoch University).
16.Grandcourt, E. (2005). Demographic characteristics of selected epinepheline groupers (family: Serranidae; subfamily: Epinephelinae) from Aldabra Atoll, Seychelles.
17.Grandcourt, E. M., Al Abdessalaam, T. Z., Al Shamsi, A. T., & Francis, F. (2006). Biology and assessment of the painted sweetlips (Diagramma pictum (Thunberg, 1792)) and the spangled emperor (Lethrinus nebulosus (Forsskål, 1775)) in the southern Arabian Gulf. Fishery Bulletin, 104(1), 75-88.
18.Grandcourt, E. M., Al Abdessalaam, T. Z., Francis, F., & Al Shamsi, A. T. (2006). Fisheries biology of a short-lived tropical species: Gerres longirostris (Lacépède, 1801) in the Arabian Gulf. ICES Journal of Marine Science, 63(3), 452-459.
19.Grandcourt, E., Al Abdessalaam, T. Z., Francis, F., & Al Shamsi, A. (2011). Demographic parameters and status assessments of Lutjanus ehrenbergii, Lethrinus lentjan, Plectorhinchus sordidus and Rhabdosargus sarba in the southern Arabian Gulf. Journal of Applied Ichthyology, 27(5), 1203-1211.
20.Grandcourt, E., Al Abdessalaam, T. Z., Francis, F., & Al Shamsi, A. (2010). Age‐based life history parameters and status assessments of by‐catch species (Lethrinus borbonicus, Lethrinus microdon, Pomacanthus maculosus and Scolopsis taeniatus) in the southern Arabian Gulf. Journal of Applied Ichthyology, 26(3), 381-389.
21.Grandcourt, E., Al Abdessalaam, T., Francis, F., & Al Shamsi, A. (2007). Population biology and assessment of the white‐spotted spinefoot, Siganus canaliculatus (Park, 1797), in the southern Arabian Gulf. Journal of Applied Ichthyology, 23(1), 53-59.
22.Gray, C. A., Haddy, J. A., Fearman, J., Barnes, L. M., Macbeth, W. G., & Kendall, B. W. (2012). Reproduction, growth and connectivity among populations of Girella tricuspidata (Pisces: Girellidae). Aquatic Biology, 16(1), 53-68.
23.Gumanao, G. S., Saceda‐Cardoza, M. M., Mueller, B., & Bos, A. R. (2016). Length–weight and length–length relationships of 139 Indo‐Pacific fish species (Teleostei) from the Davao Gulf, Philippines. Journal of Applied Ichthyology, 32(2), 377-385.
24.Hart, A. M., & Russ, G. R. (1996). Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus. Marine Ecology Progress Series, 25-35.
25.Hesp, S. A., Potter, I. C., & Hall, N. G. (2002). Age and size composition, growth rate, reproductive biology, and habitats of the West Australian dhufish (Glaucosoma hebraicum) and their relevance to the management of this species. Fishery Bulletin, 100(2), 214-227.
26.Heupel, M. R., Williams, A. J., Welch, D. J., Davies, C. R., Adams, S., Carlos, G., & Mapstone, B. D. (2010). Demography of a large exploited grouper, Plectropomus laevis: implications for fisheries management. Marine and Freshwater Research, 61(2), 184-195.
27.Kamikawa, K. T., Cruz, E., Essington, T. E., Hospital, J., Brodziak, J. K. T., & Branch, T. A. (2015). Length–weight relationships for 85 fish species from Guam. Journal of Applied Ichthyology, 31(6), 1171-1174.
28.Kritzer, J. P. (2004). Sex-specific growth and mortality, spawning season, and female maturation of the stripey bass (Lutjanus carponotatus) on the Great Barrier Reef. Fishery Bulletin, 102, 94-107.
29.Kulbicki, M., Guillemot, N., & Amand, M. (2005). A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium, 29(3), 235-252.
30.Lek, E. (2011). Comparisons between the biological characteristics of three co-occuring and reef-dwelling labrid species at two different latitudes (Doctoral dissertation, Murdoch University).
31.Lenanton, R., St John, J., Keay, I., Wakefield, C., Jackson, G., Wise, B., & Gaughan, D. (2009). Spatial scales of exploitation among populations of demersal scalefish: implications for management. Part 2: Stock structure and biology of two indicator species, West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus), in the West Coast Bioregion. Final FRDC Report Project No. 2003/052, Fisheries Research Report No. 174.
32.Love, M. S., Morris, P., McCrae, M., & Collins, R. (1990). Life history aspects of 19 rockfish species (Scorpaenidae: Sebastes) from the Southern California Bight.
33.Mapleston, A., Currey, L. M., Williams, A. J., Pears, R., Simpfendorfer, C. A., Penny, A. L., ... & Welch, D. (2009). Comparative biology of key inter-reefal serranid species on the Great Barrier Reef. Project Milestone Report to the Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Centre Limited, Cairns (55 pp.).
34.Marriott, R. J., Mapstone, B. D., & Begg, G. A. (2007). Age-specific demographic parameters, and their implications for management of the red bass, Lutjanus bohar (Forsskal 1775): a large, long-lived reef fish. Fisheries Research, 83(2-3), 204-215.
35.McGlennon, D. (2003). The fisheries biology and population dynamics of snapper Pagrus auratus in northern Spencer Gulf, South Australia (Doctoral dissertation).
36.Murty, V. S. (2002). Marine ornamental fish resources of Lakshadweep. CMFRI special publication, 72, 1-134.
37.Nadon, M. O. (2016). Stock assessment of the coral reef fishes of Hawaii, 2016. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center.
38.Nadon, M. O., Ault, J. S., Williams, I. D., Smith, S. G., & DiNardo, G. T. (2015). Length-based assessment of coral reef fish populations in the Main and Northwestern Hawaiian Islands. PLoS One, 10(8), e0133960.
39.Newman, S. J., & Dunk, I. J. (2002). Growth, age validation, mortality, and other population characteristics of the red emperor snapper, Lutjanus sebae (Cuvier, 1828), off the Kimberley coast of north-western Australia. Estuarine, Coastal and Shelf Science, 55(1), 67-80.
40.Ochavillo, D., Tofaeono, S., Sabater, M., & Trip, E. L. (2011). Population structure of Ctenochaetus striatus (Acanthuridae) in Tutuila, American Samoa: The use of size-at-age data in multi-scale population size surveys. Fisheries research, 107(1-3), 14-21.
41.Ohta, I., & Ebisawa, A. (2016). Age-based demography and sexual pattern of the white-streaked grouper, Epinephelus ongus in Okinawa. Environmental biology of fishes, 99(10), 741-751.
42.Panda, D., Chakraborty, S. K., Jaiswar, A. K., Kumar, T., & Behera, P. K. (2011). Comparative length-weight relationship of two species of carangids Decapterus russelli(Ruppell, 1830) and Megalaspis cordyla(Linnaeus, 1758) from Mumbai waters. Indian Journal of Fisheries, 58(3), 33-37.
43.Paul, L. J., & Francis, M. P. (2000). Age, growth, mortality, and yield pa rdt of butterfish (Odar pullus) in Cook Strait, New Zealand.
44.Pears, R. J., Choat, J. H., Mapstone, B. D., & Begg, G. A. (2006). Demography of a large grouper, Epinephelus fuscoguttatus, from Australia’s Great Barrier Reef: implications for fishery management. Marine Ecology Progress Series, 307, 259-272.
45.Piñón, A., Amezcua, F., & Duncan, N. (2009). Reproductive cycle of female yellow snapper Lutjanus argentiventris (Pisces, Actinopterygii, Lutjanidae) in the SW Gulf of California: gonadic stages, spawning seasonality and length at sexual maturity. Journal of Applied Ichthyology, 25(1), 18-25.
46.Ralston, S., & Dick, E. J. (2003). The status of black rockfish (Sebastes melanops) off Oregon and northern California in 2003. Pacific Fishery Management Council, Portland, Oregon.
47.Ramachandran, S., Ali, D. M., & Varghese, B. C. (2013). Age, growth and maturity of brown stripe snapper Lutjanus vitta (Quoy & Gaimard, 1824) from southwest coast of India. Journal of Marine Biological Association of India, 55(2), 61-68.
48.Rao, K. V. (1984). Age and growth of lizardfishes (Saurida spp.) from the Northwestern Bay of Bengal. Indian Journal of Fisheries, 31(1), 19-30.
49.Reuben, S., Mohamad Kasim, H., Sivakami, S., Nair, P. N., Kurup, K. N., Sivadas, M., ... & Raje, S. G. (1992). Fishery, biology and stock assessment of carangid resources from the Indian seas. Indian Journal of Fisheries, 39(3&4), 195-234.
50.Rhodes, K. L., Taylor, B. M., & McIlwain, J. L. (2011). Detailed demographic analysis of an Epinephelus polyphekadion spawning aggregation and fishery. Marine Ecology Progress Series, 421, 183-198.
51.Rhodes, K. L., Taylor, B. M., Wichilmel, C. B., Joseph, E., Hamilton, R. J., & Almany, G. R. (2013). Reproductive biology of squaretail coralgrouper Plectropomus areolatus using age‐based techniques. Journal of fish biology, 82(4), 1333-1350.
52.Rocha-Olivares, A. (1998). Age, growth, mortality, and population characteristics of the Pacific red snapper, Lutjanus peru, off the southeast coast of Baja California, Mexico. Fishery Bulletin, 96(3), 562-574.
53.Roos, D., Roux, O., & Conand, F. (2007). Notes on the biology of the bigeye scad, Selar crumenophthalmus (Carangidae) around Reunion Island, southwest Indian Ocean. Scientia Marina, 71(1), 137-144.
54.Russell, D. J., McDougall, A. J., Fletcher, A. S., Ovenden, J. R., & Street, R. (2003). Biology, management and genetic stock structure of mangrove jack (Lutjanus argentimaculatus) in Australia. Queensland Department of Primary Industries, Brisbane.
55.Santamaría-Miranda, A., Elorduy-Garay, J. F., Villalejo-Fuerte, M., & Rojas-Herrera, A. A. (2003). Desarrollo gonadal y ciclo reproductivo de Lutjanus peru (Pisces: Lutjanidae) en Guerrero, México. Revista de biología tropical, 51(2), 489-502.
56.Shimose, T., & Nanami, A. (2015). Age, growth, and reproduction of blackspot snapper Lutjanus fulviflammus (Forsskål 1775) around Yaeyama Islands, southern Japan, between 2010 and 2014. Journal of applied ichthyology, 31(6), 1056-1063.
57.Taylor, B. M., & Choat, J. H. (2014). Comparative demography of commercially important parrotfish species from Micronesia. Journal of Fish Biology, 84(2), 383-402.
58.Taylor, B. M., & Cruz, E. (2017). Age-based and reproductive biology of the Pacific Longnose Parrotfish Hipposcarus longiceps from Guam. PeerJ, 5, e4079.
59.Taylor, B. M., Gourley, J., & Trianni, M. S. (2017). Age, growth, reproductive biology and spawning periodicity of the forktail rabbitfish (Siganus argenteus) from the Mariana Islands. Marine and Freshwater Research, 68(6), 1088-1097.
60.Taylor, B. M., Oyafuso, Z. S., & Trianni, M. S. (2017). Life history of the orange-striped emperor Lethrinus obsoletus from the Mariana Islands. Ichthyological Research, 64(4), 423-432.
61.Taylor, B. M., Rhodes, K. L., Marshell, A., & McIlwain, J. L. (2014). Age‐based demographic and reproductive assessment of orangespine Naso lituratus and bluespine Naso unicornis unicornfishes. Journal of Fish Biology, 85(3), 901-916.
62.Taylor, R. B., & Willis, T. J. (1998). Relationships amongst length, weight and growth of north-eastern New Zealand reef fishes. Marine and Freshwater Research, 49(3), 255-260.
63.Trianni, M. S. (2011). Biological characteristics of the spotcheek emperor, Lethrinus rubrioperculatus, in the Northern Mariana Islands. Pacific Science, 65(3), 345-363.
64.Trip, E. D. L., Raubenheimer, D., Clements, K. D., & Choat, J. H. (2011). Reproductive demography of a temperate protogynous and herbivorous fish, Odax pullus (Labridae, Odacini). Marine and Freshwater Research, 62(2), 176-186.
65.van der Velde, T. D., Griffiths, S. P., & Fry, G. C. (2010). Reproductive biology of the commercially and recreationally important cobia Rachycentron canadum in northeastern Australia. Fisheries Science, 76(1), 33.
66.Wakefield, C. B., Newman, S. J., & Boddington, D. K. (2013). Exceptional longevity, slow growth and late maturation infer high inherent vulnerability to exploitation for bass groper Polyprion americanus (Teleostei: Polyprionidae). Aquatic Biology, 18(2), 161-174.
67.Wassef, E. A. (1991). Comparative growth studies on Lethrinus lentjan, Lacépéde 1802 and Lethrinus mahsena, Forsskål 1775 (Pisces, Lethrinidae) in the Red Sea. Fisheries Research, 11(1), 75-92.
68.Williams, A. J., Currey, L. M., Begg, G. A., Murchie, C. D., & Ballagh, A. C. (2008). Population biology of coral trout species in eastern Torres Strait: Implications for fishery management. Continental Shelf Research, 28(16), 2129-2142.
69.Williams, A. J., Davies, C. R., Mapstone, B. D., Currey, L. M., Welch, D. J., Begg, G., ... & Simpfendorfer, C. A. (2009). Age-based demography of humpback grouper Cromileptes altivelis: implications for fisheries management and conservation. Endangered Species Research, 9, 67-79.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72140-
dc.description.abstract珊瑚礁魚類是人類重要的食物和經濟來源,並在珊瑚礁生態系中扮演重要的角色。儘管漁業捕撈造成許多珊瑚礁魚族群的衰減,人們對其漁撈永續性的了解仍相當有限。魚類生活史,如成長和繁殖的相關特徵,決定了族群的成長率,能夠幫助吾人了解族群對漁撈行為的反應。具體而言,本研究假設具有“慢”生活史,如成長得慢且晚成熟的魚類,較具有“快”生活史的魚類有更低的漁撈永續性。此外,本研究亦假設,相較於雌雄異體 (gonochoristic) 的魚類,捕捉較大個體的漁撈行為對於雌雄同體中的先雌後雄 (protogynous) 的魚類有更大的衝擊,因體長較大的雄魚被捕撈後,可能導致族群受精率的下降並減少族群入添。
為驗證這些假設,本研究彙整了78種─共108個族群之印度太平洋地區之珊瑚礁魚之生活史及繁殖型態資料,並利用年齡結構模型 (age-structured model) 計算造成未開發之終生產卵族群生量 (lifetime spawning biomass, LSB) 之40 % 之漁撈死亡率 (F40),做為評估物種漁撈永續性之指標。接著利用線性混和效果模型來探討生活史、繁殖型態、緯度以及科別相關之隨機變異對族群之F40的影響。本研究發現F40受到物種的生活史及繁殖型態影響,即生活史較慢之物種具有較低的F40,而先雌後雄繁殖型態的族群之F40較雌雄異體的族群低。此外,族群科別對F40有顯著影響,而緯度的變化對F40則無顯著影響。本研究結果顯示,族群生活史及繁殖型態資料能夠幫助了解資料較缺乏之珊瑚礁魚類的漁撈永續性,幫助其保育及管理之規劃。
zh_TW
dc.description.abstractReef fishes provide important services to human and reef ecosystem. Despite many reef fishes have declined due to exploitation, there is a lack of understanding of their sustainability. Life histories (e.g., growth and reproductive traits) determine population growth rates, providing insight into population responses to fishing. Specifically, we hypothesize that fishes with slow life histories (e.g., slow growth and late maturation) are less sustainable than those with fast life histories. Further, size-selective fishing could cause a stronger impact on protogynous (i.e., female-first sex-changing) than gonochoristic ones, as removal of large males can decrease fertilization rates and subsequent recruitment. To evaluate these hypotheses, we compiled life-history data and developed a population model to estimate population sustainability (measured by the level of fishing mortality reducing lifetime spawning biomass to 40% of that of an unfished state; hereafter referred as F40) for 78 Indo-Pacific reef fishes. Using linear mixed-effect models, we explored the effects of life history and mating types on F40, simultaneously accounting for potentially confounding latitudinal effects and family-related random variance. We found significant effects of life histories (i.e., a negative correlation between F40 and a fast-to-slow continuum) and mating types (i.e., lower F40 for protogynous than gonochoristic populations) but not latitudes on F40. Also, we found significant family-related random effects on F40. Our results suggest that life-history and mating type data can provide insight into population sustainability for data-poor reef fishes, supporting conservation and management planning.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:25:23Z (GMT). No. of bitstreams: 1
ntu-107-R05241203-1.pdf: 2066428 bytes, checksum: 972b9bf7820172695ec9ffba8a062477 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
Introduction 1
Materials and methods 5
Datasets 5
Population modeling to estimate F40 7
Quantifying fast-to-slow life-history continuum 10
Exploring the effects of fast-to-slow life histories and mating types on population F40 10
Results 12
F40 of the reef fishes 12
Quantifying fast-to-slow life-history continuum 12
Exploring effects of fast-to-slow life histories and mating types on population F40 13
Discussion 14
Effects of life history and mating types on F40 14
Management implications 16
References: 18
Tables 23
Figures 24
Appendix I 32
References for Appendix I: 38
dc.language.isoen
dc.subject珊瑚礁魚zh_TW
dc.subject生活史zh_TW
dc.subject先雌後雄zh_TW
dc.subjectF40zh_TW
dc.subject漁撈永續性zh_TW
dc.subject保育zh_TW
dc.subjectprotogynyen
dc.subjectlife historyen
dc.subjectconservationen
dc.subjectreef fishen
dc.subjectsustainabilityen
dc.subjectF40en
dc.title利用生活史資料評估族群永續性─印度太平洋地區之珊瑚礁魚案例分析zh_TW
dc.titleAssessing population sustainability with life-history data:
a case study of Indo-Pacific reef fishes
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈聖峰,單偉彌,張以杰
dc.subject.keyword生活史,先雌後雄,F40,漁撈永續性,珊瑚礁魚,保育,zh_TW
dc.subject.keywordlife history,protogyny,F40,sustainability,reef fish,conservation,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201802848
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved