請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72136完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬 | |
| dc.contributor.author | Jen-Tzu Hou | en |
| dc.contributor.author | 侯恁慈 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:25:11Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | Arakaki N, Nagao T, Niki R, Toyofuku A, Tanaka H, Kuramoto Y, Emoto Y, Shibata H, Magota K & Higuti T (2003). Possible role of cell surface H+ -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol. Cancer Res. 1: 931–939.
Badding MA & Dean DA (2013). Highly acetylated tubulin permits enhanced interactions with and trafficking of plasmids along microtubules. Gene Ther. 20: 616–624. van derBliek AM, Shen Q &Kawajiri S (2013). Mechanisms of Mitochondrial Fission and Fusion. Cold Spring Harb. Perspect. Biol. 5: a011072. Cai Q, Pan P-Y & Sheng Z-H (2007). Syntabulin-Kinesin-1 Family Member 5B-Mediated Axonal Transport Contributes to Activity-Dependent Presynaptic Assembly. J. Neurosci. 27: 7284–7296. Cai Q & Tammineni P (2016). Alterations in Mitochondrial Quality Control in Alzheimer’s Disease. Front. Cell. Neurosci. 10: 24. Chang H-Y, Huang H-C, Huang T-C, Yang P-C, Wang Y-C & Juan H-F (2012). Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response. Cancer Res. 72: 4696–4706. Chang H-Y, Huang T-C, Chen N-N, Huang H-C & Juan H-F (2014). Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis. 5: e1540. Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, ChangC, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz B-J, Dolinski K & Tyers M (2017). The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45: D369–D379. deChaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, LeMontagner Y, Lagache T, Dufour A & Olivo-Marin J-C (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9: 690–696. Chen M-C (2017). Trafficking of Ectopic ATP Synthase via Mitochondrial Fission, Master Thesis, National Taiwan University. Chi SL & Pizzo SV. (2006). Cell surface F 1 F o ATP synthase: A new paradigm? Ann. Med. 38: 429–438. Comeau SR, Gatchell DW, Vajda S & Camacho CJ (2004a). ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32. Comeau SR, Gatchell DW, Vajda S & Camacho CJ (2004b). ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20: 45–50. Cross RL (1994). Our primary source of ATP. Nature 370: 594–595. Flemming A (2016). Cancer: Microtubule-straightening compound widens the therapeutic window. Nat. Rev. Drug Discov. 16: 17. Fu H, Subramanian RR & Masters SC (2000). 14-3-3 Proteins: Structure, Function, and Regulation. Annu. Rev. Pharmacol. Toxicol. 40: 617–647. Gardiner J, Barton D, Marc J & Overall R (2007). Potential Role of Tubulin Acetylation and Microtubule-Based Protein Trafficking in Familial Dysautonomia. Traffic 8: 1145–1149. Gennerich A & Vale RD (2009). Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21: 59–67. Girvin ME & Rastogi VK (1999). Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402: 263–268. Glater EE, Megeath LJ, Stowers RS & Schwarz TL (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173: 545–557. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519–526. Honore S, Pasquier E & Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell. Mol. Life Sci. 62: 3039–3056. Howard J & Hyman AA (2003). Dynamics and mechanics of the microtubule plus end. Nature 422: 753–758. Huang T-C, Chang H-Y, Hsu C-H, Kuo W-H, Chang K-J & Juan H-F (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J. Proteome Res. 7: 1433–1444. Huang T-Y (2017). The Role of Microtubules in the Trafficking of Ectopic ATP Synthase, Master Thesis, National Taiwan University. Ichimura T, Wakamiya-Tsuruta A, Itagaki C, Taoka M, Hayano T, Natsume T & Isobe T (2002). Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41: 5566–5572. Kawai Y, Kaidoh M, Yokoyama Y & Ohhashi T Cell surface F 1 /F o ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues. Am. J. Physiol. Physiol. 305: C1139–C1150 Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR & Vajda S (2013). How good is automated protein docking? Proteins Struct. Funct. Bioinforma. 81: 2159–2166. Kozakov D, Brenke R, Comeau SR & Vajda S (2006). PIPER: An FFT-based protein docking program with pairwise potentials. Proteins Struct. Funct. Genet. 65: 392–406. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D & Vajda S (2017). The ClusPro web server for protein-protein docking. Nat. Protoc. 12: 255–278. Kural C, Kim H, Syed S, Goshima G, Gelfand VI & Selvin PR (2005). Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308: 1469–1472. Marland JRK, Hasel P, Bonnycastle K & Cousin MA (2016). Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals. J. Biol. Chem. 291: 2080–2086. Mishra P & Chan DC (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15: 634–646. Mitra K & Lippincott-Schwartz J (2010). Analysis of Mitochondrial Dynamics and Functions Using Imaging Approaches. In Current Protocols in Cell Biology p Unit 4.25.1-21. Hoboken, NJ, USA: John Wiley & Sons, Inc. Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ & Pizzo SV. (2001). Endothelial cell surface F1-FO ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. 98: 6656–6661. Moser TL, Stack MS, Asplin I, Enghild JJ, Højrup P, Everitt L, Hubchak S, Schnaper HW & Pizzo SV (1999). Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 96: 2811–2816. Mowery YM & Pizzo SV (2008). Cancer Biology & Therapy Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol. Ther. 711: 1836–1838. Pagliuso A, Tham TN, Stevens JK, Lagache T, Persson R, Salles A, Olivo-Marin J-C, Oddos S, Spang A, Cossart P & Stavru F (2016). A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep. 17: 858–873. Quillen EE, Haslam GC, Samra HS, Amani-Taleshi D, Knight JA, Wyatt DE, Bishop SC, Colvert KK, Richter ML & Kitos PA (2006). Ectoadenylate kinase and plasma membrane ATP synthase activities of human vascular endothelial cells. J. Biol. Chem. 281: 20728–20737. Sheng Z-H & Cai Q (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13: 77–93. Smith MJ, Pozo K, Brickley K & Stephenson FA (2006). Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J. Biol. Chem. 281: 27216–27228. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A & Tyers M (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34: D535-539. Tang Y & Zucker RS (1997). Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18: 483–491. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC, Jaarsma D, Gerritsen HC, Akhmanova A & Hoogenraad CC (2013). TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron 77: 485–502. DeVos KJ & Sheetz MP (2007). Visualization and Quantification of Mitochondrial Dynamics in Living Animal Cells. In Methods in cell biology pp 627–682. Wai T & Langer T (2016). Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 27: 105–117. Wang W, Shi X, Liu Y, He Y, Wang Y, Yang C & Gao F (2013). The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J. Cell. Biochem. 114: 1695–1703. Weber J & Senior AE (1997). Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta - Bioenerg. 1319: 19–58. Yamamoto K, Shimizu N, Obi S, Kumagaya S, Taketani Y, Kamiya A & Ando J (2007). Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am. J. Physiol. Circ. Physiol. 293: H1646–H1653. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72136 | - |
| dc.description.abstract | 三磷酸腺苷合成酶(ATP synthase)位於粒線體內膜上,是一種負責產生三磷酸腺苷(ATP)並供給細胞內多種反應途徑使用的酵素。我們先前的研究指出三磷酸腺苷合成酶會出現在許多不同種類癌細胞的細胞膜上,稱為異位表達三磷酸腺苷合成酶(ectopic ATP synthase);然而,關於異位表達三磷酸腺苷合成酶在細胞內的運輸路徑還不是非常清楚。為了進一步研究三磷酸腺苷合成酶參與在運輸路徑中的狀況,根據先前基因集富集分析的結果,我們推測三磷酸腺苷合成酶是以完整複合體的形式存在於粒線體內部,隨著粒線體沿著細胞骨架被運輸到細胞膜上,進而也被運送至細胞膜。為了證實這項推測,我們在神經細胞SK-N-BE(2)C加入抑制細胞骨架聚合的藥物-諾考達唑(nocodazole),加藥後不管是免疫螢光染色與流式細胞儀實驗結果都顯示異位表達三磷酸腺苷合成酶的表現量下降。此外將驅動蛋白5B(Kinesin family member 5B,KIF5B) 經由小分子干擾核糖核酸(small interfering RNA)抑制其基因表現後,在抑制免疫螢光染色與流式細胞儀實驗,兩者的實驗結果中異位表達三磷酸腺苷合成酶的表現量下降。另一方面我們也藉由小分子干擾核糖核酸去抑制會造成粒線體的碎裂化(Fission)的動力激活蛋白(Dynamin-1-like protein, Drp1) 與利用質體在細胞中過度表現 Drp1 野生株、其C 端 或N端,在免疫螢光染色與流式細胞儀實驗看到異位表達三磷酸腺苷合成酶的表現量與DRP1 表現量成正相關,尤其Drp1 C 端的影響較N 端顯著。此外我們也利用網路資料庫與蛋白質-蛋白質對接(protein-protein docking)網路工具去預測驅動蛋白與動力激活蛋白是否直接相連。根據上述的實驗結果,我們推測 KIF5B-Drp複合體連結粒線體與細胞骨架的運輸模式,會在異位表達三磷酸腺苷合成酶的運輸途徑當中扮演重要角色。 | zh_TW |
| dc.description.abstract | Adenosine triphosphate (ATP) synthase, an inner membrane enzyme of mitochondria, is essential for ATP production in many cell biological processes. Our previous studies have shown that ATP synthases not only existed on mitochondrial inner membrane but also plasma membrane (ectopic ATP synthases) in several cancer cell lines. However, the trafficking mechanism of ATP synthase to cell surface is still required further investigation. According to our previous gene set enrichment analysis (GSEA) results, we inferred ectopic ATP synthases transported to cell surface through the microtubule-mediated mitochondria trafficking. To examine whether this presumption is correct, we conducted flow cytometry and immunocytochemistry (ICC) after treating nocodazole, a microtubule-depolymerizing agent, in cancer cells. The results revealed that microtubule disruption reduced ectopic ATP synthase expression level. In addition, silencing kinesin family member 5B (KIF5B), a microtubule motor protein, with small interfering RNA showed the similar trend with the results of microtubule disruption. On the other hand, we also found that mitochondria dynamic related to ectopic ATP synthase expression. Both flow cytometry and ICC demonstrated that mitochondrial fission protein, dynamic-related protein 1 (Drp1), knockdown and overexpression resulted in low and high ectopic ATP synthase expression respectively. In addition, Drp1 C-terminus was showed more significant than N-terminus in ectopic ATP synthase expression in overexpression experiments. Moreover, we used protein-protein interaction database and docking web server to predict whether KIF5B bound with Drp1 directly. Taken together, these findings suggest that KIF5B-Drp1 complex-mediated mitochondrial trafficking via microtubule may play a crucial role in ectopic ATP synthases transport. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:25:11Z (GMT). No. of bitstreams: 1 ntu-107-R05b43008-1.pdf: 4307860 bytes, checksum: be0458100137ab7906a657ec13a0ea7d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv Abbreviation v Contents vi List of Figures viii List of Tables ix Chapter 1. Introduction 1 1.1 Ectopic ATP synthase 1 1.2 Microtubules related trafficking in cytosol 2 1.3 Kinesin family member 5B 2 1.4 Mitochondrial transportation 3 1.5 Motivation 4 Chapter 2. Materials and Methods 5 2.1 Experimental design 5 2.2 Cell Culture 5 2.3 Drug treatment 6 2.4 Plasmid and short interfering RNA (siRNA) transfection 6 2.5 Flow cytometry 7 2.6 Immunocytochemistry (ICC) 8 2.7 Statistical analysis 8 2.8 Western blot 9 2.9 Mitochondrial image analysis 9 2.10 Protein-protein interaction analysis 10 2.11 Protein-protein Docking 11 Chapter 3. Results 12 3.1 Disruption of microtubules reduced the expression of ectopic ATP synthases in cancer cells. 12 3.2 Silencing Kinesin family member 5B (KIF5B) reduced the expression of ectopic ATP synthases in cancer cells. 12 3.3 Silencing KIF5B reduced the proliferation of cancer cells. 13 3.4 Quantification of the mitochondrial fission and fusion through image analysis. 13 3.5 RNAi and overexpression of dynamic-related protein 1 (Drp1) caused the expression level change of ectopic ATP synthases in cancer cells. 14 3.6 The candidate proteins interacted with KIF5B and Drp1 participated in ectopic ATP synthase trafficking pathway. 14 3.7 KIF5B interacts with Drp1 via 14-3-3 protein theta as a bridge. 15 Chapter 4. Discussion 16 Chapter 5. Conclusion 18 References 19 Figures 25 Tables 38 Appendix 45 | |
| dc.language.iso | en | |
| dc.subject | 粒線體的運輸 | zh_TW |
| dc.subject | 動力激活蛋白(Drp1) | zh_TW |
| dc.subject | 粒線體碎裂 | zh_TW |
| dc.subject | 蛋白運輸途徑 | zh_TW |
| dc.subject | 異位表達 ATP 合成? | zh_TW |
| dc.subject | 驅動蛋白5B (KIF5B) | zh_TW |
| dc.subject | 細胞骨架 | zh_TW |
| dc.subject | Drp1 | en |
| dc.subject | protein trafficking | en |
| dc.subject | mitochondria trafficking | en |
| dc.subject | mitochondria fission | en |
| dc.subject | microtubule | en |
| dc.subject | KIF5B | en |
| dc.subject | Ectopic ATP synthases | en |
| dc.title | 異位表達ATP合成酶經由KIF5B與Drp1交互作用的運輸途徑探討 | zh_TW |
| dc.title | Ectopic ATP Synthase trafficking via KIF5B and Drp1 interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠,許家郎,王憶卿,李岳倫 | |
| dc.subject.keyword | 異位表達 ATP 合成?,蛋白運輸途徑,粒線體碎裂,粒線體的運輸,細胞骨架,驅動蛋白5B (KIF5B),動力激活蛋白(Drp1), | zh_TW |
| dc.subject.keyword | Ectopic ATP synthases,protein trafficking,mitochondria trafficking,mitochondria fission,microtubule,KIF5B,Drp1, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201803868 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
