Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖
dc.contributor.authorChi-Chen Linen
dc.contributor.author林琪蓁zh_TW
dc.date.accessioned2021-06-17T06:24:55Z-
dc.date.available2019-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citationReference
[1] C. Clark Leland and C. Lyons, 'ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY,' Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29-45, 1962/10/01 1962.
[2] S. Vigneshvar, C. C. Sudhakumari, B. Senthilkumaran, and H. Prakash, 'Recent Advances in Biosensor Technology for Potential Applications – An Overview,' (in English), Frontiers in Bioengineering and Biotechnology, Review vol. 4, no. 11, 2016-February-16 2016.
[3] F. Patolsky, G. Zheng, and C. M. Lieber, 'Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,' Nature Protocols, vol. 1, p. 1711, 11/16/online 2006.
[4] P. Chen, N.-T. Huang, M.-T. Chung, T. T. Cornell, and K. Kurabayashi, 'Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders,' Advanced Drug Delivery Reviews, vol. 95, pp. 90-103, 12/1/ 2015.
[5] M. I. Stockman, 'Nanoplasmonic sensing and detection,' Science, 10.1126/science.aaa6805 vol. 348, no. 6232, p. 287, 2015.
[6] J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, 'Nanoplasmonic sensors for biointerfacial science,' Chemical Society Reviews, 10.1039/C6CS00494F vol. 46, no. 12, pp. 3615-3660, 2017.
[7] E. Petryayeva and U. J. Krull, 'Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review,' Analytica Chimica Acta, vol. 706, no. 1, pp. 8-24, 2011/11/07/ 2011.
[8] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, 'Nanosphere Lithography:  Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy,' Langmuir, vol. 20, no. 16, pp. 6927-6931, 2004/08/01 2004.
[9] S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, 'Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,' ACS Nano, vol. 5, no. 2, pp. 897-904, 2011/02/22 2011.
[10] T. H. Lin, C.-K. Yang, C.-C. Lin, M. A. Wu, A. L. Wang, and N.-T. Huang, 'A Large-Area Nanoplasmonic Sensor Fabricated by Rapid Thermal Annealing Treatment for Label-Free and Multi-Point Immunoglobulin Sensing,' Nanomaterials, vol. 7, no. 5, 2017.
[11] U. Fano, 'Effects of Configuration Interaction on Intensities and Phase Shifts,' Physical Review, vol. 124, no. 6, pp. 1866-1878, 12/15/ 1961.
[12] Y. Shen et al., 'Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,' Nature Communications, Article vol. 4, p. 2381, 08/27/online 2013.
[13] H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, 'Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,' Langmuir, vol. 24, no. 10, pp. 5233-5237, 2008/05/01 2008.
[14] H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, 'Nanorice:  A Hybrid Plasmonic Nanostructure,' Nano Letters, vol. 6, no. 4, pp. 827-832, 2006/04/01 2006.
[15] J. J. Mock, D. R. Smith, and S. Schultz, 'Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,' Nano Letters, vol. 3, no. 4, pp. 485-491, 2003/04/01 2003.
[16] C. L. Nehl, H. Liao, and J. H. Hafner, 'Optical Properties of Star-Shaped Gold Nanoparticles,' Nano Letters, vol. 6, no. 4, pp. 683-688, 2006/04/01 2006.
[17] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, 'Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes,' Nano Letters, vol. 5, no. 10, pp. 2034-2038, 2005/10/01 2005.
[18] N. Verellen et al., 'Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,' Nano Letters, vol. 11, no. 2, pp. 391-397, 2011/02/09 2011.
[19] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, 'Boosting the Figure-Of-Merit of LSPR-Based Refractive Index Sensing by Phase-Sensitive Measurements,' Nano Letters, vol. 12, no. 3, pp. 1655-1659, 2012/03/14 2012.
[20] I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, 'Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing,' ACS Nano, vol. 5, no. 10, pp. 8167-8174, 2011/10/25 2011.
[21] A. Cattoni et al., 'λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,' Nano Letters, vol. 11, no. 9, pp. 3557-3563, 2011/09/14 2011.
[22] J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, 'The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,' Plasmonics, vol. 5, no. 2, pp. 161-167, 2010/06/01 2010.
[23] H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, 'Ag dots array fabricated using laser interference technique for biosensing,' Sensors and Actuators B: Chemical, vol. 134, no. 2, pp. 940-944, 2008/09/25/ 2008.
[24] G. Si, Q. Wang, J. Lv, L. Miao, F. Wang, and S. Peng, 'Interference lithography patterned large area plasmonic nanodisks for infrared detection,' Materials Letters, vol. 128, no. Supplement C, pp. 373-375, 2014/08/01/ 2014.
[25] C. H. Liu et al., 'Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,' Optics Express, vol. 16, no. 14, pp. 10701-10709, 2008/07/07 2008.
[26] L. Xu, L. S. Tan, and M. H. Hong, 'Tuning of localized surface plasmon resonance of well-ordered Ag/Au bimetallic nanodot arrays by laser interference lithography and thermal annealing,' Applied Optics, vol. 50, no. 31, pp. G74-G79, 2011/11/01 2011.
[27] T.-Y. Chang et al., 'Large-scale plasmonic microarrays for label-free high-throughput screening,' Lab on a Chip, 10.1039/C1LC20475K vol. 11, no. 21, pp. 3596-3602, 2011.
[28] W. Menezes Jacson, J. Ferreira, J. L. Santos Marcos, L. Cescato, and G. Brolo Alexandre, 'Large-Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonic-Enhanced Photovoltaics,' Advanced Functional Materials, vol. 20, no. 22, pp. 3918-3924, 2010/11/23 2010.
[29] S. A. Maier, Plasmonics: Fundamentals and Applications. Springer US, 2007.
[30] A. G. Brolo, 'Plasmonics for future biosensors,' Nature Photonics, vol. 6, p. 709, 11/05/online 2012.
[31] X. Fang, 'Fabrication of nano metal meshes by nanoimprint lithography for organic electronics device applications,' Master, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, 2015.
[32] C. H. Chiang, 'Fabrication of subwavelength dual structures on silicon substrates with anti-reflection and low sliding angles,' Master, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, 2010.
[33] H. T. Lin, C. Lin, and N. Huang, 'Localized surface plasmon resonance platform for multi-point and real-time biosensing,' in 2017 Conference on Lasers and Electro-Optics (CLEO), 2017, pp. 1-2.
[34] Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
[35] J. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition. Taylor & Francis Group, 2017.
[36] V.-A. Oxelius, 'Immunoglobulin G (IgG) subclasses and human disease,' The American Journal of Medicine, vol. 76, no. 3, Part 1, pp. 7-18, 1984/03/30/ 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72131-
dc.description.abstract奈米電漿(nanoplamonic)效應為一種在特定奈米結構上所發生之光學現象。因此現象為非接觸式之光學偵測、不須對待測樣本進行標定 (label-free)且具有高靈敏度,因此近年來已被廣泛的使用在許多生化樣品的感測。為了製造奈米電漿所需之奈米結構,文獻中已經開發了很多方法,但是只有很少數的奈米結構製程方法能夠以低成本、穩定地產出大面積的奈米結構。而且,由於奈米電漿訊號通常有很大的半高寬 (full width at half maximum, FWHM),品質因數 (figure of merit, FoM) 通常不高,導致不容易偵測到訊號。在本篇論文中,我們提出了一個製程方法,結合雷射干涉微影技術 (laser interference lithography, LIL) 與掀離 (lift-off) 的方式,在玻璃上做出週期性的奈米金圓盤結構,以增加感測器的FoM。另外,我們也結合了LIL和奈米壓印微影技術 (nanoimprint lithography, NIL),製作出連續性的金奈米孔洞週期結構。在製程前,我們先使用時域有限差分 (finite-difference time-domain, FDTD) 模擬來決定奈米結構的最佳參數。做完奈米結構之後,更進一步地將奈米結構與微流道結合,進行生物分子的感測。我們的製程方法能夠產出大面積 (~ 5 mm × 5 mm) 的金奈米圓盤陣列,並且能夠做出任意的週期及金膜厚度,此金奈米圓盤陣列感測器的靈敏度與FoM分別為190 nm/RIU以及2.69。另一方面,連續性的金奈米孔洞感測器之靈敏度與FoM為 244 nm/RIU與2.38。此外,我們也成功地使用奈米孔洞結構之感測器量測了免疫球蛋白G (immunoglobulin G, IgG)分子。綜合以上所述,此金奈米圓盤及奈米孔洞結構為高靈敏度之奈米電漿感測器,並有潛力用於更廣泛的生醫感測應用,如定點照護(point-of-care)檢測。zh_TW
dc.description.abstractNanoplasmonic phenomena occur near nanostructure. Due to its non-contact, label-free nature, nanoplasmonic sensing has been applied to lots of biochemical sensing applications recently. In order to fabricate nanoplamonic substrate, many nanostructure fabrication methods have been developed. However, few are capable of achieving stable, large-area, and low-cost fabrication of the metal nanostructure. Moreover, due to the wide full width at half maximum (FWHM) of the spectrum, the figure of merit (FoM) of nanoplasmonic sensors are often low, causing its insensibility in detection. In our research, we propose a fabrication method combining laser interference lithography (LIL) and lift-off procedure to produce an isolated periodic gold nanostructure on glass substrate. LIL is also integrated with nanoimprint lithography (NIL) to fabricate a continuous periodic gold nanohole array. We first did FDTD simulation to determine the best parameters of the nanostructure. After fabricating the nanoplamonic sensor, we combined the nanostructure with a microfluidic chip to do bio-molecule detection. With this novel nanofabrication method, large-area (~ 5 mm × 5 mm) gold nanodisks array can be fabricated, and the sensitivity and FoM of the nanodisks can reach 190 nm/RIU and 2.69. On the other hand, the sensitivity and FoM of gold nanohole array is as high as 244 nm/RIU and 2.38. To prove the sensors can be applied to biosensing, these two nanoplasmonic sensors are used to detect immunoglobulin G (IgG) molecules. These results have shown their promising contribution in the application of point-of-care diagnosis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:24:55Z (GMT). No. of bitstreams: 1
ntu-107-R05945002-1.pdf: 5186684 bytes, checksum: 189d7c8196b59b4cb76718ed034356ca (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Research background 1
1.1.1 Label-free biosensing 1
1.1.2 Plasmonic sensing 2
1.2 Literature review 4
1.2.1 Current nanofabrication methods 4
1.2.2 The FoM of plasmonic sensing 8
1.2.3 Laser interference lithography (LIL) for LSPR nanostructure 10
1.2.4 Laser interference lithography (LIL) for EOT nanostructure 12
1.3 Research motivation 14
1.4 Thesis structure 15
Chapter 2 Plasmonic theory 17
2.1 Electromagnetics of metals 17
2.2 Theory of localized surface plasmon 19
Chapter 3 Materials and methods 23
3.1 Fabrication of nanostructure 24
3.1.1 Laser interference lithography 24
3.1.2 Lift-off process 28
3.1.3 Nanoimprint lithography 30
3.2 Optical setup for spectroscopic sensing 32
3.3 Sample preparation and biosensing protocol 33
3.4 Data analysis 35
Chapter 4 Simulation 36
4.1 Finite-difference time-domain (FDTD) 36
4.2 FDTD model 38
4.3 Simulation results and discussion 41
4.3.1 Isolated gold nanodisk 41
4.3.2 Continuous gold nanohole 45
Chapter 5 Results and discussion 49
5.1 Nanostructure morphology 49
5.2 Spectrum analysis 52
5.2.1 Repeatability and uniformity 52
5.2.2 Sensitivity and FoM 55
5.3 Bio-molecule measurement 59
Chapter 6 Conclusion 63
Chapter 7 Future work 64
Reference 66
dc.language.isoen
dc.subject雷射干涉微影zh_TW
dc.subject奈米電漿感測器zh_TW
dc.subject奈米圓盤zh_TW
dc.subject奈米孔洞zh_TW
dc.subjectlaser interference lithographyen
dc.subjectnanodisken
dc.subjectnanoholeen
dc.subjectnanoplasmonic sensoren
dc.title以雷射干涉微影技術製作奈米圓盤及孔洞陣列之奈米電漿感測器zh_TW
dc.titleNanodisk and Nanohole Array Based Nanoplasmonic Sensor Fabricated by Laser Interference Lithographyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕帆,林致廷,王倫
dc.subject.keyword奈米電漿感測器,雷射干涉微影,奈米圓盤,奈米孔洞,zh_TW
dc.subject.keywordnanoplasmonic sensor,laser interference lithography,nanodisk,nanohole,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201803966
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved