Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72103
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒
dc.contributor.authorChung-Yen Yehen
dc.contributor.author葉忠晏zh_TW
dc.date.accessioned2021-06-17T06:23:31Z-
dc.date.available2021-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation1. 方煒。2001。自動化植物工廠。設施栽培自動化專輯。103-111。
2. 方煒。2010。以植物工廠生產農作物與綠能產業研究發展。臺灣大學生物產業機電工程學系學報。
3. 方煒。2011。太陽光型植物工廠-永續性的先進植物工廠。豐年社。
4. 方煒。2011。完全控制型植物工廠。豐年社。
5. 方煒。2012。臺灣植物工廠發展現況與展望。精密設施工程與植物工場實用化技術研討會。16-23。臺南:臺南區農業改良場。
6. 方煒。2014。泛用型水耕栽培床架。中華民國專利第 M489475 號。
7. 行政院衛生福利部國民健康署。2018。衛福部國民健康署_每日飲食指南手冊。台北:行政院衛生福利部國民健康署。網址:https://www.hpa.gov.tw/Home/Index.aspx。上網日期:2018-05-06。
8. 徐躍進、羅衛國、賀紅。1992。不同處理促進菠菜種子發芽效果比較。長江蔬菜(6): 042。
9. 齊連東、劉世琦、許莉、於文艷、梁慶玲、郝樹芹。2007。光質對菠菜草酸、單寧及硝酸鹽積累效應的影響。農業工程學報 23(4): 201-205。
10. 韋友歡、黃秋嬋、王慧珏、潘紅。2010。陰生植物與陽生植物色素含量的比較分析。湖北農業科學 49(5): 1126-1129。
11. 鄭志榮。2002。園藝設施學。初版。北京:中國農業出版社。
12. 張有德。2014。人工光源對芥蘭與菠菜生長及有益視力成分含量之影響。碩士論文。宜蘭:國立宜蘭大學生物資源學院碩士在職專班。
13. 張吉順、張孝廉、王仁剛、謝升東、王軼、任學良。2016。環境脅迫影響植物開花的分子機制。浙江大學學報 (農業與生命科學版) 42(3): 289-305。
 
14. 陳品如。2012。植物工廠之菠菜水耕栽培。碩士論文。台北:國立臺灣大學園藝學研究所。
15. 宋妤。1990。影響菠菜種子發芽因素之研究。中國園藝 36: 280-289。
16. 劉冠伶。2011。植物工廠量產低硝酸鹽萵苣之研究。碩士論文。台北:國立臺灣大學生物產業機電工程學研究所。
17. 劉曉英、徐志剛、焦學磊、陳衛平。2012。可調 LED 光源系統設計及其對菠菜生長的影響。農業工程學報 28(1): 208-212。
18. 林家玉。2012。草酸含量及抗氧化能力之研究。臺東區農業改良場研究彙報 (22): 1-10。
19. 余意、劉文科。2015。弱光條件下光質和光週期對水培生菜生長與品質的影響.。中國農業氣象 36(06): 739-745.
20. 康世緯。2014。植物工廠萵苣量產整合模型與決策支援。博士論文。台北:國立臺灣大學生物產業機電工程學研究所。
21. Both, A. J., L. D. Albright, and R. W. Langhans. 1998. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. Acta Horticulture 456: 45-51.
22. Chun, C., T. Kozai., C. Kubota., and K. Okabe. 1998 Manipulation of bolting and flowering in spinach (Spinacia oleracea L.) transplant production system using artificial light. In 'XXV International Horticultural Congress, Part 5: Culture Techniques with Special Emphasis on Environmental Implications'. 201-206.
23. Chun, C., A. Watanabe., T. Kozai., H. H. Kim., and J. Fuse. 2000. Bolting and growth of spinach (Spinacia oleracea L.) can be altered by modifying the photoperiod during transplant production. HortScience 35(4): 624-626.
 
24. Dougher, T. A., and B. Bugbee. 2001. Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology 73(2): 208-212.
25. Ernstsen, J., I. E. Woodrow, and K. A. Mott. 1999. Effects of growth-light quantity, growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness. Photosynthesis research 61(1): 65-75.
26. European Food Safety Authority. 2008. Nitrate in vegetables‐scientific opinion of the panel on contaminants in the food chain. EFSA Journal 689: 1-79.
27. Fang, W. 2013. Quantification of performance in plant facotory. Technology Advances in Protected Horticulture-Proceedings of 2013 the 3rd High-level International Forum on Protected Horticulture (Shouguang,China): 64-71.
28. Giliberto, L., G. Perrotta, P. Pallara, J. L.Weller, P. D. Fraser, P. M. Bramley, A.Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology 137(1): 199-208.
29. Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. In 'VII International Symposium on Light in Horticultural Systems' 37-49.
30. Heuvelink, E. and L. Marcelis. 2018. Plant factories: optimizing LED lighting for plant growth and prodcut quality. In ' International Indoor Plant Factory Symposium'. Shanghai China.
31. Hisamatsu, T., R. W. King, C. A. Helliwell and M. Koshioka. 2005. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiology 138(2): 1106-1116.
32. Holmes, R. P., D. G.Assimos, and H. O. Goodman. 1998. Genetic and dietary influences on urinary oxalate excretion. Urological research 26(3): 195-200.
 
33. Holmes, R. P., and M. Kennedy. 2000. Estimation of the oxalate content of foods and daily oxalate intake. Kidney international 57(4): 1662-1667.
34. Hopkin, W. G.,and N. P. A. Hunter. 2008. Introduction to plant physiology. 4th ed., London:Wiley and Son.
35. Keiko. Ohashi-Kaneko, M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology 45(3):189-198.
36. Kozai, T., K. Ohyama and C. Chun. 2005. Commercialized closed systems with artificial lighting for plant production. In 'V International Symposium on Artificial Lighting in Horticulture 711'. 61-70.
37. Kudo, R., K. Yamamoto, A. Suekane, and Y. Ishida. 2010 Development of green light pest control systems in plants. II. Studies on effects of green light irradiation on strawberry anthracnose (Glomerella cingulata) and cucumber anthracnose (Colletotrichum orbiculare). SRI Res. Rep. 94:33–39.
38. Li, J., S. Hikosaka, and E. Goto. 2009. Effects of light quality and photosynthetic photon flux on growth and carotenoid pigments in spinach (Spinacia oleracea L.). In 'VI International Symposium on Light in Horticulture 907'. 105-110.
39. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ ExpBot. 67: 59-64.
40. Owen, W. G., Q. Meng, and R. G. Lopez. 2018. Promotion of Flowering from Far-red Radiation Depends on the Photosynthetic Daily Light Integral. HortScience. 53(4): 465-471.
41. Park, Y., and E. S. Runkle. 2017. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany 136: 41-49.
 
42. Patel D, M. Basu, S. Hayes, I. Majlath, FM. Hetherington, TJ. Tachaplinski, Ka. Franklin. 2013. Temperature-dependent shade avoidance involves the receptor-like kinase ERELTA. Plant J. 73: 980-992.
43. Proietti, S., S. Moscatello, G. Colla,and Y. Battistelli. 2004. The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves. The Journal of Horticultural Science and Biotechnology 79(4): 606-609.
44. Proietti, S., S. Moscatello, G. A. Giacomelli, and A. Battistelli. 2013. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances in Space Research 52(6): 1193-1200.
45. Runkle, E. S., S. R. Padhye, W. Oh, and K. Getter. 2012. Replacing incandescent lamps with compact fluorescent lamps may delay flowering. Scientia horticulturae 143: 56-61.
46. Stutte, G. W., S. Edney, and G. Newsham. 2010. Effects of UV light on anthocyanin content of red leaf lettuce under narrow and broad band light sources. In “Proceedings of the 38th Annual Meeting of the Plant Growth Regulation Society of America”. 104-109. Plant Growth Regulation Society of America
47. USDA. 1984. National agricultural library:Oxalic Acid Content of Selected Vegetables. Washington, D.C.: USDA National Agricultural Statistics Service. Available at: www.nass.usda.gov. Accessed 23 May 2018.
48. Vlahos, J. C., E. Heuvelink, and G. F. P. Martakis. 1991. A growth analysis study of three achimenes cultivars grown under three light regimes. Scientia Horticulturae 46(3): 275-282.
 
49. Yorio, N. C., G. D. Goins, H. R Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36(2): 380-383.
50. Zhang, Y., Y. Zhang, Q. Yang, and T. Li. 2018. Overhead Supplemental Far-red Light Stimulates Greenhouse Tomato Growth under Imtra-canopy Lighting. In 'V Advance in Innovation Technology of Protected Horticulture' 404-417. Shouguang: China Agricultural Science and Technology Press.
51. Zhen, S., and M. W. van Iersel. 2017. Far-red light is needed for efficient photochemistry and photosynthesis. Journal of plant physiology 209: 115-122.
52. Zukauskas, A., Z. Bliznikas, K. Breivė, A. Novičkovas, G. Samuolienė, A. Urbonavičiūtė, A. Brazaitytė, J. Jankauskienė, and P. Duchovskis. 2009. Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. In 'VI International Symposium on Light in Horticulture 907'.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72103-
dc.description.abstract菠菜含有豐富的光合色素 (葉綠素、葉黃素與類胡蘿蔔素)、草酸鹽與硝酸鹽,光合色素為對人體有益的成分,濃度越高越好;草酸鹽易與鈣結合在體內形成草酸鈣 (結石症狀),硝酸鹽在體內形成亞硝酸鹽也有諸多對人體不利的缺點,硝酸鹽在歐盟有規範的上限,草酸鹽則無類似的上限標準可做參考。本研究旨在建立於完全人工光型植物工廠內栽培‘美和’菠菜的人工光源之操作程序,透過對光質與光量的調控,期能栽培出最大產能與最高品質的菠菜。透過針對鮮重與各光合色素電力產能 (Energy Yield, EY) 與光子產能 (Photon Yield, PY) 等指標的計算,來量化評估各栽培條件的優劣。試驗分五方面進行,一、探討不同光質的三種市售 LED 燈管對菠菜生長的影響;二、探討混光 (冷白加上藍光,冷白加上遠紅光) 對菠菜生長的影響;三、由耗能與栽培效率上比較增加兩支遠紅光燈管與增加兩支冷白燈管的差異;四、透過使用遠紅光來延長光照時數並抑制開花的探討及其對菠菜鮮重與光合色素含量累積的影響;五、探討抑制菠菜開花所需的最低遠紅光光照時數與遠紅光光照時機。
結果顯示冷白光加上藍光的處理雖可增加光合色素濃度,但也抑制菠菜生長,降低了單株鮮重與單位面積的光合色素含量。未補充遠紅光的處理組的給光時數上限在 11 小時,在 12 小時的光照下就會有花苞出現,但只需在緊接著 12 小時的明期結束之後補充 2 小時的遠紅光即可抑制開花,在 12 小時的明期之前、中、後段時間內同步照射 2 小時的遠紅光,也可抑制開花。在不使菠菜開花的前提下,使用冷白光照射 14 小時且在明期末期同步提供 4 小時遠紅光照射的處理組可得最大的鮮重 (152.4 g plt-1),單位面積之葉綠素、葉黃素與類胡蘿蔔素含量可分別達 2406.16、993.53 與 1058.28 mg m-2,EY 與 PYBAR 值分別為 57.33 g kWh-1 與 12 g mol-1 與使用冷白光照射 11 小時處理組的鮮重 (88.96 g plt-1) 相比,年產能提升 71 %,三種光合色素單位面積之含量可分別提升 44 %, 51 % 與 37 %,EY 與 PYBAR 值分別提升了 25 與 23 %。針對單一或多重栽培目標建議選擇的給光方式統整為一個表格,栽培目標包括針對鮮重與/或三種光合色素含量之最大化與/或草酸鹽與/或硝酸鹽含量之最小化,此表格針對消費者對產品的多元需求,應可提供產業界參考。
zh_TW
dc.description.abstractSpinach has high concentration of photosynthetic pigments (chlorophyll, lutein and carotenoid), oxalate and nitrate, photosynthetic pigments is good for human health, however, oxalate and nitrate should not have excessive intake also for the sake of health. EU had set upper limit of nitrate level in leafy greens but no such standard was set for oxalate. The goal of this study is to investigate on the usage of artificial light to grow spinach ‘Mei Ho’ in plant factory. Various commercially available LED tubes with different spectra were tested. Using quantitative indexes such as EY (energy yield) and PY (Photon yield) of shoot fresh weight and/or contents of photosynthetic pigments, the performance of various cultural procedures can be compared, and the one with the highest outcome and quality can be identified. Totally five experiments were conducted. They are: 1. Investigate on the difference among three commercially available LED tubes on the production of spinach. 2. Investigate on the difference of the mixed light spectra including white plus blue and white plus far-red on the production of spinach. 3. Compare the difference of adding two far-red LED tubes and two cool-white LED tubes on the production of spinach. 4. Different durations of far-red light are tested to inhibite bolting of spinach while light period is longer than critical hour of spinach, which is 12 hours. 5. Investigate on the timing to apply far-red light for the shortest duration derived from previous experiment to inhibite bolting of spinach. .
Results showed that cool white mixed with blue light will enhance concentration of photosynthetic pigments, however, it also inhibite the growth, thus leading to the decrease of fresh weight and photosynthetic pigments per production area. With cool white LED tubes only, 11 hour is the critical light period, 12 hours of light will lead to bolting of spinach. Two hours of far-red light right after the photo period of cool-white illumination, the bolting will not happened. Two hours of far-red is provided during the photo period, no matter it is at the first, central or last two hours during the photo period, the bolting can be inhibit. Using cool white LED tubes illuminated for 14 hours with far-red simultaneously at the last 4 hours during the light perod, the bolting can be inhibite and the fresh weight can reach 152.4 grams per plant, the chlorophyll, lutein and carotenoid pigment content can achieve 2406.16, 993.53 and 1058.28 miligram per square meter respectively. Compare with the treatment without using any far-red, the fresh weight only reach 88.96 gram per plant using cool-white LED tubes illuminated for 11 hours per day. The annual production, energy yield (EY) and photon yield (PYBAR) can be enhanceticd by 71, 25 and 23 %, respectively with the help of far-red LEDs. Concentration of three photosynthetic pigments per unit production area can be increased by 44 %, 51 % and 37 %, respectively. The best light treatment subjects to single or multiple targets are compiled. The targets are to derive highest fresh weight, concentration of photosynthetic pigments and/or the lowest concentration of oxalate and/or nitrate. Such Table with targets matching consumers’ need, should be able to serve as a useful tool to the plant factory industry.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:23:31Z (GMT). No. of bitstreams: 1
ntu-107-R05631042-1.pdf: 4261848 bytes, checksum: 4a5124fc8954c3e8f43655346167804b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言與研究目的 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 菠菜 3
2.2 植物工廠 5
2.2.1 植物工廠發展與定義 5
2.2.2 定義 6
2.2.3 分類 7
2.3 栽培系統 9
2.3.1 湛水式循環系統 10
2.3.2 薄膜式循環系統 10
2.3.3 潮汐式淹灌系統 10
2.4 光 11
2.4.1 光量 11
2.4.2 光週期 12
2.4.3 光質 13
2.5 人工光植物工廠栽培菠菜 17
2.5.1 菠菜種子發芽 17
2.5.2 光量對菠菜之影響 17
2.5.3 光質對菠菜之影響 18
2.5.4 光週期對菠菜的影響 19
第三章 材料與方法 21
3.1 實驗場所 21
3.1.1 環境控制 21
3.2 量測儀器與水耕資材 24
3.3 栽培作物與養液成分 26
3.3.1 栽培作物 26
3.3.2 養液成分 26
3.4 分析藥品 27
3.5 量測方法 28
3.5.1 鮮重量測 28
3.5.2 硝酸鹽含量分析方法 28
3.5.3 草酸鹽含量分析方法 29
3.5.4 光合色素含量分析方式 30
3.6 電力產能、光子產能與年產能 31
3.6.1 電力產能 (Energy Yield, EY) 32
3.6.2 光子產能 (Photon Yield, PY) 32
3.6.3 年產能 32
3.7 統計分析 35
3.8 研究方法 36
3.8.1 不同光質與混光處理 36
3.8.2 菠菜種子發芽率 42
3.8.3 三種不同光質栽培美和菠菜之探討 43
3.8.4 白光與混光 (白+遠紅,白+藍) 栽培之比較 45
3.8.5 白光與白+遠紅光於不同光量 (耗能) 下栽培之比較 47
3.8.6 菠菜開花及臨界時數與遠紅光抑制開花之探討 49
3.8.7 以遠紅光抑制菠菜開花所需照明時數之探討 51
3.8.8 於不同時段補充 2 小時遠紅光對抑制菠菜開花之探討 54
3.8.9 等效光期時數之探討 57
3.8.10 暗期補充遠紅光對抑制菠菜開花之探討 60
第四章 結果與討論 63
4.1 菠菜種子發芽率 63
4.2 美和菠菜育苗期 64
4.3 三種不同光質栽培美和菠菜之探討 65
4.4 白光與混光 (白+遠紅,白+藍) 栽培之比較 70
4.5 白光與白+遠紅光於不同光量 (耗能) 下栽培之比較 82
4.6 菠菜開花及臨界時數與遠紅光抑制開花之探討 93
4.7 以遠紅光抑制菠菜開花所需照明時數之探討 104
4.8 於不同時段補充 2 小時遠紅光對抑制菠菜開花之探討 108
4.9 等效光期時數之探討 112
4.10 暗期補充遠紅光對抑制菠菜開花之探討 118
4.11 討論 121
4.11.1 光質與光量對菠菜草酸鹽含量 121
4.11.2 補光策略對菠菜鮮重與光合色素影響 122
4.11.3 遠紅光對菠菜生長之探討 123
4.11.4 遠紅光對菠菜開花現象 124
4.11.5 年產能分析 125
4.11.6 兼顧多種目標下育成期給光方式之探討 127
第五章 結論 129
第六章 建議 131
參考文獻 133
dc.language.isozh-TW
dc.subject遠紅光zh_TW
dc.subject植物工廠zh_TW
dc.subject菠菜zh_TW
dc.subject光合色素zh_TW
dc.subject光質zh_TW
dc.subject量化指標zh_TW
dc.subjectFar reden
dc.subjectLight Qualityen
dc.subjectQuantitative Indexen
dc.subjectPlant Factoryen
dc.subjectSpinachen
dc.subjectPhotosynthetic Pigmenten
dc.title光質與光週期對植物工廠內‘美和’菠菜生育之影響zh_TW
dc.titleEffects of Light Quality and Photoperiod on the Growth of
Spinach ‘Mei Ho’ Grown in Plant Factory
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康,羅筱鳳,楊雯如
dc.subject.keyword遠紅光,植物工廠,菠菜,光合色素,光質,量化指標,zh_TW
dc.subject.keywordFar red,Plant Factory,Spinach,Photosynthetic Pigment,Light Quality,Quantitative Index,en
dc.relation.page138
dc.identifier.doi10.6342/NTU201802544
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved