請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72100完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡文聰(Andrew M. Wo) | |
| dc.contributor.author | Po-Wei Hsu | en |
| dc.contributor.author | 許博惟 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:23:22Z | - |
| dc.date.available | 2023-08-20 | |
| dc.date.copyright | 2018-08-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | 1. Park, S.T. and J. Kim, Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. Int Neurourol J, 2016. 20(Suppl 2): p. S76-83.
2. van Nimwegen, K.J., et al., Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing. Clin Chem, 2016. 62(11): p. 1458-1464. 3. Ley, T.J., et al., DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature, 2008. 456(7218): p. 66-72. 4. Barzon, L., et al., Applications of Next-Generation Sequencing Technologies to Diagnostic Virology. International Journal of Molecular Sciences, 2011. 12(11): p. 7861-7884. 5. Roh, S.W., et al., Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends in Biotechnology, 2010. 28(6): p. 291-299. 6. Clarke, L., et al., The 1000 Genomes Project: data management and community access. Nature Methods, 2012. 9: p. 459. 7. Gamazon, E.R., et al., A pharmacogene database enhanced by the 1000 Genomes Project. Pharmacogenet Genomics, 2009. 19(10): p. 829-32. 8. Dong, L., et al., Clinical Next Generation Sequencing for Precision Medicine in Cancer. Curr Genomics, 2015. 16(4): p. 253-63. 9. TruSeq DNA Sample Preparation Guide. 2012; Available from: https://support.illumina.com/downloads/truseq_dna_sample_preparation_guide_15026486.html. 10. Ion AmpliSeq™ Library Preparation on the Ion Chef™ System. 2017; Available from: https://www.thermofisher.com/order/catalog/product/A29024. 11. QIAseq FX DNA Library Handbook. 2015; Available from: https://www.qiagen.com/us/resources/resourcedetail?id=6f298961-8e3d-4235-b5b1-5a3a3394dbb0&lang=en. 12. Metzker, M.L., Sequencing technologies - the next generation. Nat Rev Genet, 2010. 11(1): p. 31-46. 13. Head, S.R., et al., Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 2014. 56(2): p. 61-4, 66, 68, passim. 14. Kim, H., et al., A microfluidic DNA library preparation platform for next-generation sequencing. PLoS One, 2013. 8(7): p. e68988. 15. Tan, S.J., et al., A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps. PLOS ONE, 2013. 8(7): p. e64084. 16. Kim, S., et al., High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat Commun, 2017. 8: p. 13919. 17. Cho, Y.-K., et al., One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab on a Chip, 2007. 7(5): p. 565-573. 18. Kim, T.-H., et al., Fully Integrated Lab-on-a-Disc for Nucleic Acid Analysis of Food-Borne Pathogens. Analytical Chemistry, 2014. 86(8): p. 3841-3848. 19. Koh, C.-Y., et al., Centrifugal Microfluidic Platform for Ultrasensitive Detection of Botulinum Toxin. Analytical Chemistry, 2015. 87(2): p. 922-928. 20. Tang, M., et al., A Review of Biomedical Centrifugal Microfluidic Platforms. Micromachines, 2016. 7(2). 21. Geissler, M., et al., Microfluidic Integration of a Cloth-Based Hybridization Array System (CHAS) for Rapid, Colorimetric Detection of Enterohemorrhagic Escherichia coli (EHEC) Using an Articulated, Centrifugal Platform. Anal Chem, 2015. 87(20): p. 10565-72. 22. Cho, H., et al., How the capillary burst microvalve works. Journal of Colloid and Interface Science, 2007. 306(2): p. 379-385. 23. Ahn, C.H., et al., Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE, 2004. 92(1): p. 154-173. 24. Johnson, R.D., et al., Development of a Fully Integrated Analysis System for Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics. Analytical Chemistry, 2001. 73(16): p. 3940-3946. 25. Siegrist, J., et al., Serial siphon valving for centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2009. 9(1): p. 55-63. 26. Zehnle, S., et al., Pneumatic siphon valving and switching in centrifugal microfluidics controlled by rotational frequency or rotational acceleration. Microfluidics and Nanofluidics, 2015. 19(6): p. 1259-1269. 27. Endrullat, C., et al., Standardization and quality management in next-generation sequencing. Appl Transl Genom, 2016. 10: p. 2-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72100 | - |
| dc.description.abstract | 次世代定序技術(NGS)相較於過往的核酸定序技術上具有快、高通量以及較低成本的優點,因此自問世以來已在許多基因研究領域上被使用。然而,在定序前的樣本製備上卻仍仰賴人工操作者進行,這不僅不符合成本效益,樣本的品質亦會受到操作者人為因素的影響。此外,雖然定序成本已大幅下降,在定序樣本製備上因為需要許多試劑,在花費上仍有改進的空間,在面對接下來推行的個人全基因定序等大量的需求下,如何以快速並且低成本的製作高品質的定序樣本成為一個目前極為迫切的問題。
本研究設計以可變換方向離心碟盤系統加上可拋式微流晶片應用於次世代定序樣本文庫製備,將樣本文庫製備步驟中的fragmentation與ligation等步驟整合進微流晶片中,相較於其他微流體控制的技術,此微流晶片藉由改變晶片在旋轉載台上固定的位置控制以觸發微流體的流動。晶片中的微流結構具有達到自動分液、量液與混和的設計,不僅有利於自動化、標準化作業,更可降低失誤發生率。除此之外,為了能使微流晶片能夠大規模商用,可拋式微流晶片的設計也趨向於不必使用表面改質或是電極、黃光製程等費工的技術,對於晶片的可靠度容易掌控也更利於生產。微流晶片更以低製造成本、低試劑使用量與多通道作為設計目標,製作上使用雷射雕刻機加工三片PMMA,並以雙面膠黏合即可。單片可建構四個樣本且每個樣本試劑使用量僅原本的1/8。相較於其他微流體操控系統往往受到較長的準備時間或是過於龐大複雜的系統等限制,本系統單純藉由離心系統達到流動控制以及適當的微流晶片設計,相信對於開發相關自動化機台將是一大助力。 本研究對於微流晶片的特性進行評估,不論在高濃度還是低濃度初始DNA的情況下,晶片在樣本濃度或是片段分布上均展現出高度的重複性以及可靠性。此外,在極低初始DNA (0.05 ng) 的條件下亦能成功製備定序樣本,同時在所有測試中,試劑的花費上僅為人為操作的1/6。因此,此微流系統具備了利於大規模應用上的特點,相信在未來大規模定序的高度需求下能成擔當重任,成為解決方案。 | zh_TW |
| dc.description.abstract | The emergence of the next generation sequence (NGS) technology has propelled genomic analysis into a new era. With its high-throughput and high-speed characteristics, the utilization of such technology had been consistently increasing. However, the sequencing library preparation has difficulties accommodating the speed of the sequencer since the manual operation is often required which, for most cases, is labor-intensive and operator-dependent. Thus, fast and cost-efficient library preparation for NGS has become a key bottleneck.
This thesis presents a centrifugal-based microfluidic system enables on-chip fragmentation, end repair, A-addition, and ligation. The disposable microfluidic chip was designed to be simple, inexpensive, and easy to fabricate with only a laser engraving double-sided adhesive tapes machine and PMMA. Each chip can process up to four individual samples while the reagent consumption is only 1/8 of the manual bench-top protocol per sample. Comparing to other liquid manipulation techniques, the chip implemented special structures for reliable automatic reagent partitioning and metering functions via centrifugal force further enhance the feasibility of such device in both research and clinical usage. Moreover, the microfluidic system showed consistent yield in preparing library with high quantity of input DNA while low input DNA of 0.05 ng library preparation was successfully demonstrated with good results as well. Taken together, this system includes features of multiplex capable, low reagent usage, low input capability, and fine microstructure for proper liquid manipulation that makes the device a useful tool for various library prep applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:23:22Z (GMT). No. of bitstreams: 1 ntu-107-R05543090-1.pdf: 2786946 bytes, checksum: 219bb1dc1cf6c138193b86292eb28e44 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract v 目錄 Table of Contents vii 圖目錄 List of Figures viii 表目錄 List of Tables ix Chapter 1 Introduction 1 1.1 NGS technology and its bottlenecks 1 1.2 Current library construction platforms for NGS application 2 1.3 Centrifugal microfluidic platform for NGS library preparation 5 1.4 Framework of this thesis 7 Chapter 2 Design Feature and Methodology 8 2.1 Directional fluid control for liquid triggering method 8 2.2 Centrifugal microfluidic chip design 10 2.3 System setup 13 Chapter 3 Materials and Methods 14 3.1 Materials 14 3.1.1 Microfluidic platform fabrication 14 3.1.2 Cell and DNA extraction 15 3.1.3 Reagents 15 3.2 Methods 17 3.2.1 Library preparation on microfluidic chip 17 3.2.2 Library quantification and quality control 21 Chapter 4 Results and Discussion 21 4.1 Performance of the microfluidic chip 21 4.2 Library quality evaluation 27 Chapter 5 Conclusion and future works 35 Reference 37 | |
| dc.language.iso | en | |
| dc.subject | 低量樣本 | zh_TW |
| dc.subject | 離心微流 | zh_TW |
| dc.subject | 多工處理 | zh_TW |
| dc.subject | sample preparation | en |
| dc.subject | centrifugal microfluidic | en |
| dc.subject | low sample input | en |
| dc.title | 使用微流晶片製備多樣本文庫應用於次世代基因定序 | zh_TW |
| dc.title | Library preparation for next generation sequencing using a multiplex microfluidic chip | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建甫(Chien-Fu Chen),許聿翔(Yu-Hsiang Hsu) | |
| dc.subject.keyword | 多工處理,離心微流,低量樣本, | zh_TW |
| dc.subject.keyword | sample preparation,centrifugal microfluidic,low sample input, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU201801987 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
