Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貴生(Guey-Sheng Liou)
dc.contributor.authorSin-Yu Chenen
dc.contributor.author陳欣鈺zh_TW
dc.date.accessioned2021-06-17T06:22:14Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-18
dc.identifier.citationChapter 1
1.J. R. Platt, The Journal of Chemical Physics, 1961, 34, 862-863.
2.M. Higuchi, Y. Akasaka, T. Ikeda, A. Hayashi and D. G. Kurth, Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 74-78.
3.S. K. Deb, Appl. Opt., 1969, 8, 192-195.
4.C. G. Granqvist, Thin Solid Films, 2014, 564, 1-38.
5.M. Morita, Journal of Polymer Science Part B: Polymer Physics, 1994, 32, 231-242.
6.P. Shi, C. M. Amb, E. P. Knott, E. J. Thompson, D. Y. Liu, J. Mei, A. L. Dyer and J. R. Reynolds, Advanced Materials, 2010, 22, 4949-4953.
7.D. Weng, Y. Shi, J. Zheng and C. Xu, Organic Electronics, 2016, 34, 139-145.
8.H.-S. Liu, B.-C. Pan, D.-C. Huang, Y.-R. Kung, C.-M. Leu and G.-S. Liou, NPG Asia Mater, 2017, 9, e388.
9.S. Bulja, R. Kopf, A. Tate and T. Hu, 2016, 6, 28839.
10.P. M. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: fundamentals and applications, John Wiley & Sons, 2008.
11.A. Kraft, On the discovery and history of Prussian Blue, 2008.
12.M. Weil and W.-D. Schubert, Newsletter, 2013.
13.B. W. Faughnan, R. S. Crandall and M. A. Lampert, Applied Physics Letters, 1975, 27, 275-277.
14.O. Schirmer, V. Wittwer, G. Baur and G. Brandt, Journal of the Electrochemical Society, 1977, 124, 749-753.
15.J. L. Shay, G. Beni and L. M. Schiavone, Applied Physics Letters, 1978, 33, 942-944.
16.G. Beni, C. Rice and J. Shay, Journal of The Electrochemical Society, 1980, 127, 1342-1348.
17.W. M. Kline, R. G. Lorenzini and G. A. Sotzing, Coloration Technology, 2014, 130, 73-80.
18.H. J. Byker, Electrochimica Acta, 2001, 46, 2015-2022.
19.H. J. Byker, Journal, 1990.
20.W. L. Tonar, J. A. Forgette, J. S. Anderson, J. H. Bechtel, J. W. Carter and J. S. Stam, Journal, 2002.
21.J. Żmija and M. Małachowski, Journal of Achievements in Materials and Manufacturing Engineering, 2011, 48, 14--23.
22.N. M. Rowley and R. J. Mortimer, Science Progress, 2002, 85, 243-262.
23.L. Zheng, Y. Xu, D. Jin and Y. Xie, Chemistry of Materials, 2009, 21, 5681-5690.
24.C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans and B. P. Rand, ACS Applied Materials & Interfaces, 2011, 3, 3244-3247.
25.K.-C. Cheng, F.-R. Chen and J.-J. Kai, Solar Energy Materials and Solar Cells, 2006, 90, 1156-1165.
26.M. R. J. Scherer, L. Li, P. M. S. Cunha, O. A. Scherman and U. Steiner, Advanced Materials, 2012, 24, 1217-1221.
27.A. Ghicov, M. Yamamoto and P. Schmuki, Angewandte Chemie International Edition, 2008, 47, 7934-7937.
28.S. H. Mujawar, A. I. Inamdar, C. A. Betty, V. Ganesan and P. S. Patil, Electrochimica Acta, 2007, 52, 4899-4906.
29.Y. S. Nam, H. Park, A. P. Magyar, D. S. Yun, T. S. Pollom and A. M. Belcher, Nanoscale, 2012, 4, 3405-3409.
30.R.-T. Wen, G. A. Niklasson and C. G. Granqvist, ACS Applied Materials & Interfaces, 2015, 7, 9319-9322.
31.W. Lin, Q. Zhao, H. Sun, K. Y. Zhang, H. Yang, Q. Yu, X. Zhou, S. Guo, S. Liu and W. Huang, Advanced Optical Materials, 2015, 3, 368-375.
32.F. Lin, D. Nordlund, T.-C. Weng, R. G. Moore, D. T. Gillaspie, A. C. Dillon, R. M. Richards and C. Engtrakul, ACS Applied Materials & Interfaces, 2013, 5, 301-309.
33.R.-T. Wen, C. G. Granqvist and G. A. Niklasson, Advanced Functional Materials, 2015, 25, 3359-3370.
34.R.-T. Wen, C. G. Granqvist and G. A. Niklasson, ChemElectroChem, 2016, 3, 675-675.
35.P. R. Somani and S. Radhakrishnan, Materials Chemistry and Physics, 2003, 77, 117-133.
36.P. Judeinstein and J. Livage, Journal of Materials Chemistry, 1991, 1, 621-627.
37.S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland, Advanced Materials, 2003, 15, 1269-1273.
38.C.-P. Li, F. Lin, R. M. Richards, C. Engtrakul, R. C. Tenent and C. A. Wolden, Solar Energy Materials and Solar Cells, 2014, 121, 163-170.
39.S. H. Baeck, T. Jaramillo, G. D. Stucky and E. W. McFarland, Nano Letters, 2002, 2, 831-834.
40.A. J. T. Naik, M. E. A. Warwick, S. J. A. Moniz, C. S. Blackman, I. P. Parkin and R. Binions, Journal of Materials Chemistry A, 2013, 1, 1827-1833.
41.C. G. Granqvist, Handbook of inorganic electrochromic materials, Elsevier, 1995.
42.G. Beni and J. L. Shay, Applied Physics Letters, 1978, 33, 567-568.
43.S. Gottesfeld, J. D. E. McIntyre, G. Beni and J. L. Shay, Applied Physics Letters, 1978, 33, 208-210.
44.P. S. Patil, R. K. Kawar and S. B. Sadale, Electrochimica Acta, 2005, 50, 2527-2532.
45.Y. Sato, K. Ono, T. Kobayashi, H. Wakabayashi and H. Yamanaka, Journal of The Electrochemical Society, 1987, 134, 570-575.
46.Y. Takasu, S. Onoue, K. Kameyama, Y. Murakami and K. Yahikozawa, Electrochimica acta, 1994, 39, 1993-1997.
47.K. Yamanaka, Japanese journal of applied physics, 1991, 30, 1285.
48.K. Yamanaka, Japanese journal of applied physics, 1989, 28, 632.
49.S. Hackwood, A. Dayem and G. Beni, Physical Review B, 1982, 26, 471.
50.V. D. Neff, Journal of the Electrochemical Society, 1978, 125, 886-887.
51.R. J. Mortimer, Chemical Society Reviews, 1997, 26, 147-156.
52.A. Braun and J. Tcherniac, Ber. Dtsch. Chem. Ges, 1907, 40, 2709-2714.
53.H. de Diesbach and E. von der Weid, Helvetica Chimica Acta, 1927, 10, 886-888.
54.C. E. Dent, R. P. Linstead and A. R. Lowe, Journal of the Chemical Society (Resumed), 1934, DOI: 10.1039/JR9340001033, 1033-1039.
55.J. M. Robertson, Journal of the Chemical Society (Resumed), 1935, 615-621.
56.P. M. Monk, R. J. Mortimer and D. R. Rosseinsky, 1995.
57.G. Collins and D. Schiffrin, Journal of The Electrochemical Society, 1985, 132, 1835-1842.
58.N. L. Bill, O. Trukhina, J. L. Sessler and T. Torres, Chemical Communications, 2015, 51, 7781-7794.
59.D. J. Guerrero, X. Ren and J. Ferraris, Chemistry of materials, 1994, 6, 1437-1443.
60.F. Garnier, G. Tourillon, M. Gazard and J. C. Dubois, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 148, 299-303.
61.B. Scrosati, Applications of electroactive polymers, Springer, 1993.
62.H.-J. Yen and G.-S. Liou, Polymer Chemistry, 2012, 3, 255-264.
63.L.-C. Lin, H.-J. Yen, Y.-R. Kung, C.-M. Leu, T.-M. Lee and G.-S. Liou, Journal of Materials Chemistry C, 2014, 2, 7796-7803.
64.H.-S. Liu, B.-C. Pan, D.-C. Huang, Y.-R. Kung, C.-M. Leu and G.-S. Liou, NPG Asia Materials, 2017, 9, e388.
65.S.-H. Cheng, S.-H. Hsiao, T.-H. Su and G.-S. Liou, Macromolecules, 2005, 38, 307-316.
66.C.-W. Chang and G.-S. Liou, Journal of Materials Chemistry, 2008, 18, 5638-5646.
67.R. Nelson and R. Adams, Journal of the American Chemical Society, 1968, 90, 3925-3930.
68.C.-W. Chang, C.-H. Chung and G.-S. Liou, Macromolecules, 2008, 41, 8441-8451.
69.Y.-W. Chuang, H.-J. Yen, J.-H. Wu and G.-S. Liou, ACS Applied Materials & Interfaces, 2014, 6, 3594-3599.
70.M. Bineci, M. Bağlan and S. Atılgan, Sensors and Actuators B: Chemical, 2016, 222, 315-319.
71.C. Niu, Q. Liu, Z. Shang, L. Zhao and J. Ouyang, Nanoscale, 2015, 7, 8457-8465.
72.S. Chen and X.-L. Ni, RSC Advances, 2016, 6, 6997-7001.
73.Q. Feng, Y. Li, L. Wang, C. Li, J. Wang, Y. Liu, K. Li and H. Hou, Chemical Communications, 2016, 52, 3123-3126.
74.M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, Journal of Materials Chemistry, 2010, 20, 1858-1867.
75.X. Cheng, R. Zhang, X. Cai and B. Liu, Journal of Materials Chemistry B, 2017, 5, 3565-3571.
76.M. Jiang, X. Gu, J. W. Y. Lam, Y. Zhang, R. T. K. Kwok, K. S. Wong and B. Z. Tang, Chemical Science, 2017, 8, 5440-5446.
77.Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, Journal of the American Chemical Society, 2007, 129, 1520-1521.
78.M. Teng, X. Jia, X. Chen, Z. Ma and Y. Wei, Chemical Communications, 2011, 47, 6078-6080.
79.Q. Benito, X. F. Le Goff, S. Maron, A. Fargues, A. Garcia, C. Martineau, F. Taulelle, S. Kahlal, T. Gacoin, J.-P. Boilot and S. Perruchas, Journal of the American Chemical Society, 2014, 136, 11311-11320.
80.K. Kawaguchi, T. Seki, T. Karatsu, A. Kitamura, H. Ito and S. Yagai, Chemical Communications, 2013, 49, 11391-11393.
81.H. Li, J. Cheng, H. Deng, E. Zhao, B. Shen, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li and B. Z. Tang, Journal of Materials Chemistry C, 2015, 3, 2399-2404.
82.Z. Chang, Y. Jiang, B. He, J. Chen, Z. Yang, P. Lu, H. S. Kwok, Z. Zhao, H. Qiu and B. Z. Tang, Chemical Communications, 2013, 49, 594-596.
83.J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin and Z. Li, Journal of Materials Chemistry, 2012, 22, 12001-12007.
84.J. Huang, X. Yang, X. Li, P. Chen, R. Tang, F. Li, P. Lu, Y. Ma, L. Wang, J. Qin, Q. Li and Z. Li, Chemical Communications, 2012, 48, 9586-9588.
85.Z. Zhao, J. W. Y. Lam and B. Z. Tang, Journal of Materials Chemistry, 2012, 22, 23726-23740.
86.J. B. Birks, 1970.
87.J. Slavík, Fluorescence microscopy and fluorescent probes, Springer, 1996.
88.R. B. Thompson, Fluorescence sensors and biosensors, CRC Press, 2005.
89.J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chemistry of Materials, 2003, 15, 1535-1546.
90.Y. Hong, J. W. Y. Lam and B. Z. Tang, Chemical Communications, 2009, DOI: 10.1039/B904665H, 4332-4353.
91.J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Advanced Materials, 2014, 26, 5429-5479.
92.Y. Hong, J. W. Y. Lam and B. Z. Tang, Chemical Society Reviews, 2011, 40, 5361-5388.
93.J. Wu, S. Sun, X. Feng, J. Shi, X.-Y. Hu and L. Wang, Chemical Communications, 2014, 50, 9122-9125.
94.N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam and B. Z. Tang, Chemistry – A European Journal, 2014, 20, 15349-15353.
95.R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam and B. Z. Tang, Chemical Society Reviews, 2015, 44, 4228-4238.
96.M. Fujiki, B. Z. Tang and B. Liu, eds., Aggregation-Induced Emission: Materials and Applications Volume 1, American Chemical Society, 2016.
97.F. Xu, H. Wang, X. Du, W. Wang, D.-E. Wang, S. Chen, X. Han, N. Li, M.-S. Yuan and J. Wang, Dyes and Pigments, 2016, 129, 121-128.
98.Z. Yang, W. Qin, N. L. C. Leung, M. Arseneault, J. W. Y. Lam, G. Liang, H. H. Y. Sung, I. D. Williams and B. Z. Tang, Journal of Materials Chemistry C, 2016, 4, 99-107.
99.C. Liu, Q. Cui, J. Wang, Y. Liu and J. Chen, Soft Matter, 2016, 12, 4295-4299.
100.R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera and B. Z. Tang, The Journal of Physical Chemistry C, 2009, 113, 15845-15853.
101.W. Qin, D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu and B. Z. Tang, Advanced Functional Materials, 2012, 22, 771-779.
102.X. Y. Shen, W. Z. Yuan, Y. Liu, Q. Zhao, P. Lu, Y. Ma, I. D. Williams, A. Qin, J. Z. Sun and B. Z. Tang, The Journal of Physical Chemistry C, 2012, 116, 10541-10547.
103.R. Hu, N. L. C. Leung and B. Z. Tang, Chemical Society Reviews, 2014, 43, 4494-4562.
104.H. Lu, Y. Zheng, X. Zhao, L. Wang, S. Ma, X. Han, B. Xu, W. Tian and H. Gao, Angewandte Chemie International Edition, 2016, 55, 155-159.
105.B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, Journal of the American Chemical Society, 2002, 124, 14410-14415.
106.A. Eisfeld and J. S. Briggs, Chemical Physics, 2006, 324, 376-384.
107.F. Würthner, T. E. Kaiser and C. R. Saha-Möller, Angewandte Chemie International Edition, 2011, 50, 3376-3410.
108.Y. Wang, T. Liu, L. Bu, J. Li, C. Yang, X. Li, Y. Tao and W. Yang, The Journal of Physical Chemistry C, 2012, 116, 15576-15583.
109.A. I. Ciuciu, L. Flamigni, K. Skonieczny and D. T. Gryko, Physical Chemistry Chemical Physics, 2013, 15, 16907-16916.
110.T. Mutai, H. Sawatani, T. Shida, H. Shono and K. Araki, The Journal of Organic Chemistry, 2013, 78, 2482-2489.
111.D.-E. Wu, Q.-C. Yao and M. Xia, Physical Chemistry Chemical Physics, 2015, 17, 3287-3294.
112.L. Cui, Y. Baek, S. Lee, N. Kwon and J. Yoon, Journal of Materials Chemistry C, 2016, 4, 2909-2914.
113.Q. Chen, C. Jia, Y. Zhang, W. Du, Y. Wang, Y. Huang, Q. Yang and Q. Zhang, Journal of Materials Chemistry B, 2017, 5, 7736-7742.
114.P. Zhang, X. Nie, M. Gao, F. Zeng, A. Qin, S. Wu and B. Z. Tang, Materials Chemistry Frontiers, 2017, 1, 838-845.
115.J. Chen, Z. Xie, J. W. Y. Lam, C. C. W. Law and B. Z. Tang, Macromolecules, 2003, 36, 1108-1117.
116.Q. Peng, Y. Yi, Z. Shuai and J. Shao, Journal of the American Chemical Society, 2007, 129, 9333-9339.
117.M. Shimizu, Y. Takeda, M. Higashi and T. Hiyama, Angewandte Chemie, 2009, 121, 3707-3710.
118.Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao and H. Tian, Advanced Functional Materials, 2007, 17, 3799-3807.
119.Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren and M. Jiang, The Journal of Physical Chemistry C, 2008, 112, 3975-3981.
120.E. Lager, J. Liu, A. Aguilar-Aguilar, B. Z. Tang and E. Peña-Cabrera, The Journal of Organic Chemistry, 2009, 74, 2053-2058.
121.C. Y. K. Chan, J. W. Y. Lam, Z. Zhao, S. Chen, P. Lu, H. H. Y. Sung, H. S. Kwok, Y. Ma, I. D. Williams and B. Z. Tang, Journal of Materials Chemistry C, 2014, 2, 4320-4327.
122.Y. Cui, Y.-M. Yin, H.-T. Cao, M. Zhang, G.-G. Shan, H.-Z. Sun, Y. Wu, Z.-M. Su and W.-F. Xie, Dyes and Pigments, 2015, 119, 62-69.
123.D. Lo, C.-H. Chang, G. Krucaite, D. Volyniuk, J. V. Grazulevicius and S. Grigalevicius, Journal of Materials Chemistry C, 2017, 5, 6054-6060.
124.W. Z. Yuan, F. Mahtab, Y. Gong, Z.-Q. Yu, P. Lu, Y. Tang, J. W. Y. Lam, C. Zhu and B. Z. Tang, Journal of Materials Chemistry, 2012, 22, 10472-10479.
125.J. Yang, N. Sun, J. Huang, Q. Li, Q. Peng, X. Tang, Y. Dong, D. Ma and Z. Li, Journal of Materials Chemistry C, 2015, 3, 2624-2631.
126.Z. Zhao, B. He and B. Z. Tang, Chemical Science, 2015, 6, 5347-5365.
127.Y. Zhang, C. Liang, H. Shang, Y. Ma and S. Jiang, Journal of Materials Chemistry C, 2013, 1, 4472-4480.
128.G. Zhang, A. Ding, Y. Zhang, L. Yang, L. Kong, X. Zhang, X. Tao, Y. Tian and J. Yang, Sensors and Actuators B: Chemical, 2014, 202, 209-216.
129.Y. Zhang, H. Li, G. Zhang, X. Xu, L. Kong, X. Tao, Y. Tian and J. Yang, Journal of Materials Chemistry C, 2016, 4, 2971-2978.
130.W. Dong, T. Fei, A. Palma-Cando and U. Scherf, Polymer Chemistry, 2014, 5, 4048-4053.
131.X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen and Y. Wei, Polymer Chemistry, 2014, 5, 399-404.
132.R. Yoshii, K. Tanaka and Y. Chujo, Macromolecules, 2014, 47, 2268-2278.
133.C. J. Bhongale, C.-W. Chang, C.-S. Lee, E. W.-G. Diau and C.-S. Hsu, The Journal of Physical Chemistry B, 2005, 109, 13472-13482.
134.Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma and Y. Ma, Chemical Communications, 2007, DOI: 10.1039/B612732K, 231-233.
135.H.-C. Yeh, W.-C. Wu, Y.-S. Wen, D.-C. Dai, J.-K. Wang and C.-T. Chen, The Journal of Organic Chemistry, 2004, 69, 6455-6462.
136.S. S. Palayangoda, X. Cai, R. M. Adhikari and D. C. Neckers, Organic Letters, 2008, 10, 281-284.
137.B. Wang, L.-H. Bi and L.-X. Wu, Journal of Materials Chemistry, 2011, 21, 69-71.
138.M. Amelia, C. Lincheneau, S. Silvi and A. Credi, Chemical Society Reviews, 2012, 41, 5728-5743.
139.Z. Jiang, Z. Zhong, S. Xue, Y. Zhou, Y. Meng, Z. Hu, N. Ai, J. Wang, L. Wang, J. Peng, Y. Ma, J. Pei, J. Wang and Y. Cao, ACS Applied Materials & Interfaces, 2014, 6, 8345-8352.
140.W. Jiang, X. Ban and Y. Sun, RSC Advances, 2015, 5, 66994-67000.
141.N. Sun, S. Meng, D. Chao, Z. Zhou, Y. Du, D. Wang, X. Zhao, H. Zhou and C. Chen, Polymer Chemistry, 2016, 7, 6055-6063.
142.J. Liu, G. Luo, S. Mi, J. Zheng and C. Xu, Solar Energy Materials and Solar Cells, 2017, DOI: https://doi.org/10.1016/j.solmat.2017.04.024.
143.V. Goulle, A. Harriman and J.-M. Lehn, Journal of the Chemical Society, Chemical Communications, 1993, DOI: 10.1039/C39930001034, 1034-1036.
144.M. Dias, P. Hudhomme, E. Levillain, L. Perrin, Y. Sahin, F.-X. Sauvage and C. Wartelle, Electrochemistry Communications, 2004, 6, 325-330.
145.Y. Kim, E. Kim, G. Clavier and P. Audebert, Chemical Communications, 2006, DOI: 10.1039/B608312A, 3612-3614.
146.P. Audebert and F. Miomandre, Chemical Science, 2013, 4, 575-584.
147.N. Sun, F. Feng, D. Wang, Z. Zhou, Y. Guan, G. Dang, H. Zhou, C. Chen and X. Zhao, RSC Advances, 2015, 5, 88181-88190.
148.G. Clavier and P. Audebert, Chemical Reviews, 2010, 110, 3299-3314.
149.J. Sun, Y. Chen and Z. Liang, Advanced Functional Materials, 2016, 26, 2783-2799.
150.Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, Journal of Electroanalytical Chemistry, 2009, 632, 201-205.
151.A. Beneduci, S. Cospito, M. L. Deda and G. Chidichimo, Advanced Functional Materials, 2015, 25, 1240-1247.
152.S. Seo, S. Pascal, C. Park, K. Shin, X. Yang, O. Maury, B. D. Sarwade, C. Andraud and E. Kim, Chemical Science, 2014, 5, 1538-1544.
153.F. Miomandre, R. B. Pansu, J. F. Audibert, A. Guerlin and C. R. Mayer, Electrochemistry Communications, 2012, 20, 83-87.
154.M. Yano, K. Matsuhira, M. Tatsumi, Y. Kashiwagi, M. Nakamoto, M. Oyama, K. Ohkubo, S. Fukuzumi, H. Misaki and H. Tsukube, Chemical Communications, 2012, 48, 4082-4084.
155.J. Yoo, T. Kwon, B. D. Sarwade, Y. Kim and E. Kim, Applied Physics Letters, 2007, 91, 241107.
156.H.-J. Yen and G.-S. Liou, Chemical Communications, 2013, 49, 9797-9799.
157.J.-H. Wu and G.-S. Liou, Advanced Functional Materials, 2014, 24, 6422-6429.
158.C.-P. Kuo, C.-N. Chuang, C.-L. Chang, M.-k. Leung, H.-Y. Lian and K. Chia-Wen Wu, Journal of Materials Chemistry C, 2013, 1, 2121-2130.
159.C.-P. Kuo, Y.-S. Lin and M.-k. Leung, Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50, 5068-5078.
160.T. Sato and M. Higuchi, Chemical Communications, 2013, 49, 5256-5258.
161.H. Tong, Y. Hong, Y. Dong, Hau, J. W. Y. Lam, Z. Li, Z. Guo, Z. Guo and B. Z. Tang, Chemical Communications, 2006, DOI: 10.1039/B608425G, 3705-3707.
162.W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Advanced Materials, 2010, 22, 2159-2163.
163.N. Zhao, J. W. Y. Lam, H. H. Y. Sung, H. M. Su, I. D. Williams, K. S. Wong and B. Z. Tang, Chemistry – A European Journal, 2014, 20, 133-138.
164.X. Shen, G. Huang, K. Li, G. Zhang and D. Zhang, Science China Chemistry, 2013, 56, 1197-1203.
Chapter 2
1.J. Ye, Z. Chen, M.-K. Fung, C. Zheng, X. Ou, X. Zhang, Y. Yuan and C.-S. Lee, Chemistry of Materials, 2013, 25, 2630-2637.
2.F. Cicoira and C. Santato, Advanced Functional Materials, 2007, 17, 3421-3434.
3.L.-Y. Niu, Y.-S. Guan, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Chemical Communications, 2013, 49, 1294-1296.
4.J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chemical Communications, 2001, DOI: 10.1039/B105159H, 1740-1741.
5.V. Goulle, A. Harriman and J.-M. Lehn, Journal of the Chemical Society, Chemical Communications, 1993, DOI: 10.1039/C39930001034, 1034-1036.
6.S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and E. Kim, Advanced Functional Materials, 2012, 22, 3556-3561.
7.F. Miomandre, R. B. Pansu, J. F. Audibert, A. Guerlin and C. R. Mayer, Electrochemistry Communications, 2012, 20, 83-87.
8.C.-P. Kuo, C.-N. Chuang, C.-L. Chang, M.-k. Leung, H.-Y. Lian and K. Chia-Wen Wu, Journal of Materials Chemistry C, 2013, 1, 2121-2130.
9.Y. Kim, E. Kim, G. Clavier and P. Audebert, Chemical Communications, 2006, DOI: 10.1039/B608312A, 3612-3614.
10.Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, Journal of Electroanalytical Chemistry, 2009, 632, 201-205.
11.H.-J. Yen and G.-S. Liou, Chemical Communications, 2013, 49, 9797-9799.
12.W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Advanced Materials, 2010, 22, 2159-2163.
13.B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, Journal of the American Chemical Society, 2002, 124, 14410-14415.
14.S. Zeng, L. Yin, X. Jiang, Y. Li and K. Li, Dyes and Pigments, 2012, 95, 229-235.
15.M. J. Percino, M. Cerón, M. E. CAS No.tro, G. Soriano-Moro, V. M. Chapela and F. J. Meléndez, Chemical Papers, 2014, 68, 668-680.
16.J. M. Kauffman and G. Moyna, The Journal of Organic Chemistry, 2003, 68, 839-853.
17.Y. Li, H. Zhou, W. Chen, G. Sun, L. Sun and J. Su, Tetrahedron, 2016, 72, 5620-5625.
18.A.-X. Ding, H.-J. Hao, Y.-G. Gao, Y.-D. Shi, Q. Tang and Z.-L. Lu, Journal of Materials Chemistry C, 2016, 4, 5379-5389.
19.S. Zhen, J. Guo, W. Luo, A. Qin, Z. Zhao and B. Z. Tang, Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 274-282.
20.G.-S. Liou, Y.-L. Yang, W.-C. Chen and Y. O. Su, Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45, 3292-3302.
21.K. Yuan Chiu, T. Xiang Su, J. Hong Li, T.-H. Lin, G.-S. Liou and S.-H. Cheng, Journal of Electroanalytical Chemistry, 2005, 575, 95-101.
22.C.-W. Chang and G.-S. Liou, Organic Electronics, 2007, 8, 662-672.
Chapter 3
1.J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chemical Communications, 2001, DOI: 10.1039/B105159H, 1740-1741.
2.W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Advanced Materials, 2010, 22, 2159-2163.
3.Y. C. Y. Y., X. Huae, J. Shenglu, K. R. T. K., L. J. W. Y., L. Xiaolin, K. Sunil, D. Dan and T. B. Zhong, Advanced Materials, 2017, 29, 1606167.
4.A. Pană, A. L. Panait and V. Cîrcu, Research on Chemical Intermediates, 2018, 44, 2025-2038.
5.R. L. Hunt and B. S. Ault, Spectrochimica Acta Part A: Molecular Spectroscopy, 1981, 37, 63-69.
6.J. Dong, K. M. Solntsev and L. M. Tolbert, Journal of the American Chemical Society, 2009, 131, 662-670.
7.A. S. Blum, M. H. Moore and B. R. Ratna, Langmuir, 2008, 24, 9194-9197.
8.X. Shen, G. Huang, K. Li, G. Zhang and D. Zhang, Science China Chemistry, 2013, 56, 1197-1203.
9.S. Miao, H. Li, Q. Xu, N. Li, J. Zheng, R. Sun, J. Lu and C. M. Li, Journal of Materials Chemistry, 2012, 22, 16582-16589.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72078-
dc.description.abstract本論文分為四個章節,第一章為總體序論,簡述電致變色、聚集誘導發光及電致變色發光元件的應用及發展。第二章將具有聚集誘導發光的α-苯基肉桂腈衍生物結合膠態電解質製備成電致變色發光元件,希望透過膠態來限制聚集誘導發光的分子運動,藉此來達到其發光的特性。在材料上,四個具相似結構的聚集誘導發光分子被成功合成並探討其光學與發光行為,而元件則以小分子型的diOMe-TPA-CN及diOMe-TPA-CNBr為陽極材料,與紫精衍生物的陰極材料進行搭配,讓陽極及陰極變色材料作為互相之電荷儲存基層,達到穩定及降低工作電壓的效果,並藉由材料在UV-Vis吸收光譜上的吸收區段與材料的放光區段相近,達到螢光淬滅之效果。第三章節是由第二章的單體所衍生出的一系列具有不同陰離子與不同碳鏈長的吡啶鹽,並針對其不同的結構對其基本的光學、發光與電化學性質進行探討。第四章為結論。zh_TW
dc.description.abstractThis study has been divided into four chapters. Chapter 1 is general introduction of electrochromism, aggregation-induced emission (AIE), and electrofluorochromism (EFC). In chapter 2, four triphenylamine-based cyanostilbene derivatives with different substituents were synthesized successfully for investigating the effects on photoluminescent properties, electrochromic and electrofluorochromic (EFC) behaviors in gel-type electrochromic devices (ECDs). The photoluminescent performance of the resulted materials in the solution, aggregated and solid states, would be influenced by the substituents, respectively. Also, these AIE-active materials in the aggregated state could be utilized to fabricate high-performance gel-type electrofluorochromic (EFC) devices. On the other hand, by cathodic EC materials into devices, shorter response time and higher contrast ratio were obtained. In chapter 3, a series of diphenylamine-based cyanostilbene derivatives with different alkyl chain and anion were synthesized successfully for investigating their effects on optical properties, photoluminescent properties and electorchemical properties. In addition, the intrinsically ambipolar system was built on the triphenylamine and pyridinium salt unit, which could be served as a charge storage layer to rapid balance the charge during redox reaction. The photoluminescent performance of the resulted materials in the solution, aggregated and solid states, would be influenced by the different alkyl chains as well as the kinds of anion.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:22:14Z (GMT). No. of bitstreams: 1
ntu-107-R05549017-1.pdf: 20938726 bytes, checksum: 20852fd1921fb0acb2ced291b0146432 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsACKNOWLEDGEMENTS..................i
ABSTRACT (in English)..................ii
ABSTRACT (in Chinese)..................iii
TABLE OF CONTENTS...........................iv
LIST OF TABLES...........................viii
LIST OF FIGURES...........................ix
LIST OF SCHEMES...........................xxiii
CHAPTER 1...........................1
1.1 Development of Electrochromism.....................2
1.1.1 Brief History and General Notion..................4
1.1.2 Common Electrochromic Materials..................5
1.1.2.1 Transition Metal Oxides..................6
1.1.2.2 Metal Coordination Complexes............10
1.1.2.3 Conducting Polymers..................13
1.1.2.4 Viologens..................17
1.1.2.5 Triarylamine-Based Derivatives.........18
1.2 Development of Aggregation-Induced Emission (AIE)....20
1.2.1 General Notion.......21
1.2.2 Working Mechanism of AIE.......23
1.2.2.1 Restriction of Intramolecular Rotations (RIR)....24
1.2.2.2 Restriction of Intramolecular Vibration (RIV)....25
1.2.3 Triphenylamine-Based AIE Luminogens.......26
1.2.4 Cyanostilbene AIE Derivatives.......28
1.3 Electrofluorochromism (EFC).......30
1.3.1 Brief History and General Notion.......31
1.3.2 Mechanism.......31
1.3.3 Electrofluorochromic Materials.......32
1.3.4 Development of Electrofluorochromic Devices.......41
1.4 Research Motivation.......42
References.......44
CHAPTER 2...................................56
Abstract.......57
2.1 Introduction.......58
2.2 Experimental Section.......60
2.2.1 Materials.......60
2.2.2 Measurement..............61
2.2.3 Molecular Simulation..............62
2.2.4 Monomer Synthesis..............63
2.2.5 Fabrication of Gel-type Electrofluorochromic Device.......67
2.3 Result and Discussion..............69
2.3.1 Monomer Synthesis and Characterization.......69
2.3.2 Optical Properties.......74
2.3.3 AIE Effect.......77
2.3.4 Gaussian Simulation.......81
2.3.5 Electrochromic Properties.......85
2.3.6 Electrofluorochromic Properties of Electrofluorochromic Devices( EFCDs).......107
2.3.6.1 Introducing Heptyl Viologen into EFCD System....111
2.3.6.2 Concentration Effect on Heptyl Viologen on EFCDs System..............115
2.4 Summary..............121
Reference.....................122
CHAPTER 3............................124
Abstract.....................125
3.1 Introduction.....................126
3.2 Experimental Section.....................127
3.2.1 Materials.....................127
3.2.2 Measurement.....................127
3.2.3 Molecular Simulation.....................128
3.2.4 Monomer Synthesis.....................129
3.3 Result and Discussion.....................135
3.3.1 Monomer Synthesis and Characterization...........135
3.3.2 Optical Properties.....................153
3.3.3 AIE Effect.....................158
3.3.4 HOMO/LUMO Energy Level.....................164
3.3.5 Electrochromic Properties.....................167
3.4 Summary.....................175
Reference.....................176
CHAPTER 4............................177
APPENDIX............................180
LIST OF PUBLICATION.....................181
Table 1.1 Summary of applications of various kinds of electrochromic materials....6
Table 1.2 Electrochromic transition metal oxides35....7
Table 1.3 Electrochromic behaviors of polythiophene with different monomers60....16
Table 1.4 Colors of polythiophenes based on 3-methylthiophene with different relative positions of substituents61....16
Table 2.1 Photoluminescent properties of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr and their photos taken under UV illumination (365 nm)...76
Table 2.2 Redox potentials and energy levels of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr...82
Table 2.3 Simulation torsion angle of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr...84
Table 2.4 EC switching properties of gel-type devices with diOMe-TPA-CN and diOMe-TPA-CNBr...99
Table 2.5 EC switching properties of gel-type devices with diOMe-TPA-CN/HV and 5 μmole TBABF4 under different applied voltages...102
Table 2.6 EC switching properties of gel-type devices with diOMe-TPA-CNBr/HV and 5 μmole TBABF4 under different applied voltages...102
Table 2.7 EC switching properties of gel-type devices with diOMe-TPA-CN/HV and different concentration of TBABF4 between 1.8 V (ON)/-0.1 V (OFF)...106
Table 2.8 EC switching properties of gel-type devices with diOMe-TPA-CNBr/HV and different concentration of TBABF4 between 1.8 V (ON)/-0.1 V (OFF)...106
Table 2.9 Solubility testa of diOMe-TPA-CN, diOMe-TPA-CNBr and HV in PC...115
Table 3.1 Photoluminescent properties of TPA-Py series and diOMe-TPA-Py series and their photos taken under UV illumination (365 nm)...157
Table 3.2 Redox potentials and energy levels of α-cyanostilbene-containing triphenylamine derivatives...166
Figure 1.1 Multi-color changes in the electrochromic display device. The device is capable of simply expressing 5 types of display patterns by varying the voltage in the range of -2.5V to +2.5V2........2
Figure 1.2 Optical differences between oxidation and reduction of tungsten oxide smart window4........3
Figure 1.3 Typical structure of an electrochromic device9........3
Figure 1.4 Illustration of single layer ECD17........5
Figure 1.5 Electron-microscopical images of tungsten oxides and tungsten metal, formed during hydrogen reduction of WO312........8
Figure 1.6 Colors change of Prussian Blue during redox reaction10........10
Figure 1.7 Spectra of iron hexacyanoferrate films on ITO-coated glass with 0.2 mol dm-3 KCl +0.01 mol dm-3 HCl as supporting electrolyte at various potentials: (i) +0.50 (PB, blue), (ii) -0.20 (PW, transparent), (iii) +0.80 (PG, green), (iv) +0.85 (PG, green), (v) +0.90 (PG, green), and (vi) +1.20 V (PY, yellow)51.......11
Figure 1.8 Structure of Lu(Pc)258........12
Figure 1.9 Mechanism of the electrochemical polymerization of the polypyrrole51........14
Figure 1.10 PANI forms and their interconversions35......17
Figure 1.11 General structures of viologen and its redox state22........28
Figure 1.12 Muti-colored electrochromic behaviors of TPA-based materials68........19
Figure 1.13 Muti-colored electrochromic behaviors of TPA-based (a) epoxy type69 and (b) polybenzoxazine type63 polymers........20
Figure 1.14 Fluorescence photographs of solutions and suspensions and structures of (a) fluorescein (15 μM) (the upper one) in water/acetone mixtures with different acetone fraction (fa), (b) DDPD (10 mM) (the central one) in THF/water mixtures and (c) HPS (20 μM) (the lower one) in THF/water mixtures with different fraction of water (fw)91, 92........23
Figure 1.15 Illustration of AIE mechanisms arising from (a) propeller-shaped tetraphenylethene (TPE) with RIR pathway and (b) shell-like 10,10’,11,11’-tetrahydro-5,5’-bidibenzo[a, d][7]annulenylidene (THBA) with RIV pathway91........26
Figure 1.16 Photographs of triphenylamine-boradiazaindacene (TPA-BODIPY) derivatives120 (a) and (b) were taken under illumination of a UV lamp in solvents with increasing polarity (from left to right): (A) hexane, (B) cyclohexane, (C) toluene, (D) chloroform, (E) ethyl acetate, (F) THF, (G) ethanol, (H) acetonitrile, and (I) methanol........28
Figure 1.17 Comparison of molecular packing arrangements of structures A, B and C. The C–N…H hydrogen bonds in the crystal packing structure of C are marked by dotted lines92........29
Figure 1.18 Photographs of crystals of diphenylfumaronitrile derivatives 19a–19c and nanoaggregates of 19d suspended in a THF/water solution (1 : 9 v/v) taken under illumination of a handheld UV lamp91........30
Figure 1.19 Working mechanisms of EFC devices149........32
Figure 1.20 EFCD under different potentials145........33
Figure 1.21 The fluorescence-switching device and chemical structures of tetrazines150........34
Figure 1.22 EFC behaviors of chloromethoxytetrazine (upper one) and dimethoxytetrazines (lower one) at different potentials: (a) initial state, (b) reduced state and (c) back to initial state150........34
Figure 1.23 (a) The electrofluorochromic device with electrofluorochromic thienoviologen, (b) the electrofluorochromic behavior of 10 wt% thienoviologen in gel, (c) content effect on photoluminescent spectra and (d) fluorescence spectra as applying different voltages of 10 wt% thienoviologen in gel151........35
Figure 1.24 The possible mechanism of cyanine dye152........36
Figure 1.25 Structure of ruthenium (Ru)-bipyridine complex153........37
Figure 1.26 EFC mechanism of europium complex and its ON/OFF154 luminescence image.........37
Figure 1.27 Structures of DTOPV and PTOPV155........38
Figure 1.28 Emissive photos of devices containing (a) DTOPV and (b) PTOPV, recorded at 0, +2, and −2 V under UV light155........38
Figure 1.29 Structures, EFC behaviors and schematic diagram of devices of (a) CN-PI and CN-PA156 and (b) CN-PTPA157........39
Figure 1.30 (a) Structures and schematic illustration of the creation of a white-light EFC device. Reversible EFC behaviors of (b) P2, (c) P1 and (d) a blend of them158, 159........40
Figure 1.31 (a) Structure of polyEuFe, (b) estimated energy diagram of polyEuFe in oxidized state of Fe ions and (c) reversible fluorescence switching at 613 nm under excitation of 340 nm (red line) and absorption of the metal to ligand charge transfer transition (MLCT) band at 570 nm (blue line)160........41
Figure 2.1 Procedure of fabricating the gel-type EFC devices........68
Figure 2.2 Scheme of EFC devices........68
Figure 2.3 1H-NMR spectrum of diOMe-TPA-CN in DMSO-d6........71
Figure 2.4 1H-1H COSY spectrum of diOMe-TPA-CN in DMSO-d6........71
Figure 2.5 13C-NMR spectrum of diOMe-TPA-CN in DMSO-d6........72
Figure 2.6 1H-13C HSQC spectrum of diOMe-TPA-CN in DMSO-d6........72
Figure 2.7 FTIR spectrum of diOMe-TPA-CN........73
Figure 2.8 Absorption spectra of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr in (a) DMSO solution (10 μM) (b) solid state........75
Figure 2.9 PL spectra of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr in (a) DMSO solution (10 μM) (b) solid state........75
Figure 2.10 Normalized absorption and PL spectra of (a) TPA-CN, (b) TPA-CNBr, (c) diOMe-TPA-CN and (d) diOMe-TPA-CNBr in dilute DMSO solution (10 μM) and solid state........76
Figure 2.11 (a) Photos of TPA-CN taken under UV light in different water/DMSO fractions. (b) PL spectra of TPA-CN in DMSO and water/DMSO mixtures with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus the composition of aqueous mixtures of TPA-CN. I0 = Emission intensity in pure DMOS solution. Solution concentration: 10 μM; λex: 396 nm........79
Figure 2.12 (a) Photos of TPA-CNBr taken under UV light in different water/DMSO fractions. (b) PL spectra of TPA-CNBr in DMSO and water/DMSO mixtures with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus the composition of aqueous mixtures of TPA-CNBr. I0 = Emission intensity in pure DMSO solution. Solution concentration: 10 μM; λex: 402 nm........79
Figure 2.13 (a) Photos of diOMe-TPA-CN taken under UV light in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-CN in DMSO and water/DMSO mixtures with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus the composition of aqueous mixtures of diOMe-TPA-CN. I0 = Emission intensity in pure DMSO solution. Solution concentration: 10 μM; λex: 415 nm........80
Figure 2.14 (a) Photos of diOMe-TPA-CNBr taken under UV light in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-CNBr in DMSO and water/DMSO mixtures with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus the composition of aqueous mixtures of diOMe-TPA-CNBr. I0 = Emission intensity in pure DMSO solution. Solution concentration: 10 μM; λex: 423 nm........80
Figure 2.15 Molecular orbital amplitude plots and energy levels of all fluorophores, calculated by B3LYP/6-31G(d)........82
Figure 2.16 Cyclic voltammetry diagrams (scan rate: 50 mV/s) of (a) TPA-CN (d) TPA-CNBr (g) diOMe-TPA-CN (j) diOMe-TPA-CNBr in MeCN (10-3 M) containing 0.1 M of TBAP as the electrolyte. UV absorption spectra of (b) TPA-CN (e) TPA-CNBr (h) diOMe-TPA-CN (k) diOMe-TPA-CNBr in MeCN (10 μM). UV absorption spectra of (c) TPA-CN (f) TPA-CNBr (i) diOMe-TPA-CN (l) diOMe-TPA-CNBr in solid state........83
Figure 2.17 Cyclic voltammetric diagram (scan rate: 50 mV/s) of (a) TPA-CN, (b) TPA-CNBr, (c) diOMe-TPA-CN and (d) diOMe-TPA-CNBr. Elecrofluorochromic materials (10-3 M) was dissolved in 0.1 M of TBABF4/PC........86
Figure 2.18 Absorbance spectrum and photos of TPA-CN at the applied potential from 0 – 1.5 V. TPA-CN (10-3 M) was dissolved in 0.1 M of TBABF4/PC........88
Figure 2.19 Absorbance spectrum and photos of TPA-CNBr at the applied potential from 0 – 1.4 V. TPA-CNBr (10-3 M) was dissolved in 0.1 M of TBABF4/PC........88
Figure 2.20 Absorbance spectrum and photos of diOMe-TPA-CN at the applied potential from 0 – 1.0 V. diOMe-TPA-CN (10-3 M) was dissolved in 0.1 M of TBABF4/PC........89
Figure 2.21 Absorbance spectrum and photos of diOMe-TPA-CNBr at the applied potential from 0 – 1.0 V. diOMe-TPA-CNBr (10-3 M) was dissolved in 0.1 M of TBABF4/PC........89
Figure 2.22 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of TPA-CN after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........91
Figure 2.23 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of TPA-CNBr after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........91
Figure 2.24 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of diOMe-TPA-CN after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........92
Figure 2.25 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of diOMe-TPA-CNBr after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........92
Figure 2.26 Cyclic voltammetric diagram (scan rate: 50 mV/s) of EFCDs based on (a) 0.75 μmole diOMe-TPA-CN and (b) 0.75 μmole diOMe-TPA-CNBr. Devices contain 5 μmole TBABF4 as supporting electrolyte........94
Figure 2.27 Cyclic voltammetric diagram (scan rate: 50 mV/s) of EFCDs based on (a) 0.75 μmole diOMe-TPA-CN and (b) 0.75 μmole diOMe-TPA-CNBr both with 0.75 μmole HV. Devices contain 5 μmole TBABF4 as supporting electrolyte........94
Figure 2.28 Absorbance spectrum of gel-type EFCDs based on diOMe-TPA-CN as applying voltage from 0 – 2.3 V. Devices contain 0.75 μmole diOMe-TPA-CN and 5 μmole TBABF4 as supporting electrolyte........96
Figure 2.29 Absorbance spectrum of gel-type EFCDs based on diOMe-TPA-CNBr as applying voltage from 0 – 2.4 V. Devices contain 0.75 μmole diOMe-TPA-CNBr and 5 μmole TBABF4 as supporting electrolyte........96
Figure 2.30 (a), (b) Absorbance spectrum of gel-type EFCDs based on 0.75 μmole diOMe-TPA-CN and 0.75 μmole HV at the applied potential from 0 – 1.8 V under different scale. Devices contain 5 μmole TBABF4 as supporting electrolyte........97
Figure 2.31 (a), (b) Absorbance spectrum of gel-type EFCDs based on 0.75 μmole diOMe-TPA-CNBr and 0.75 μmole HV at the applied potential from 0 – 1.8 V under different scale. Devices contain 5 μmole TBABF4 as supporting electrolyte........97
Figure 2.32 EC switching response of gel-type device with (a),(b) diOMe-TPA-CN between 2.3 V (ON) and -0.1 V (OFF) and (c), (d) diOMe-TPA-CNBr between 2.4 V (ON) and -0.1 V (OFF) at their characteristic peaks. Devices contain 0.75 μmole electrofluorochromic materials and 5 μmole TBABF4 as supporting electrolyte........99
Figure 2.33 EC switching response of gel-type devices with diOMe-TPA-CN/HV between (a), (b) 1.8 V/-0.1 V (ON/OFF), (c), (d) 1.9 V/-0.1 V (ON/OFF), (e), (f) 2.0 V/-0.1 V (ON/OFF) at their characteristic peaks. Devices contain both 0.75 μmole diOMe-TPA-CN and HV and 5 μmole TBABF4 as supporting electrolyte........100
Figure 2.34 EC switching response of gel-type device with diOMe-TPA-CNBr/HV between (a), (b) 1.8 V/-0.1 V (ON/OFF), (c), (d) 1.9 V/-0.1 V (ON/OFF) at their characteristic peaks. Devices contain both 0.75 μmole diOMe-TPA-CNBr and HV and 5 μmole TBABF4 as supporting electrolyte........101
Figure 2.35 EC switching response of gel-type device with diOMe-TPA-CN/HV containing (a), (b) 0 μmole TBABF4, (c), (d) 3 μmole TBABF4, (e), (f) 4 μmole TBABF4 between 1.8 V/-0.1 V (ON/OFF) at their relative characteristic peaks. Devices contain 0.75 μmole electrofluorochromic materials and different concentration of TBABF4 as supporting electrolyte........104
Figure 2.36 EC switching response of gel-type device with diOMe-TPA-CNBr/HV containing (a), (b) 0 μmole TBABF4, (c), (d) 3 μmole TBABF4, (e), (f) 4 μmole TBABF4 between 1.8 V/-0.1 V (ON/OFF) at their relative characteristic peaks. Devices contain 0.75 μmole electrofluorochromic materials and different concentration of TBABF4 as supporting electrolyte........105
Figure 2.37 (a) PL spectra as applying voltage between 0 and 2.3 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of diOMe-TPA-CN gel-type device with 5 μmole TBABF4 as supporting electrolyte........109
Figure 2.38 (a) PL spectra as applying voltage between 0 and 2.4 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of diOMe-TPA-CNBr gel-type device with 5 μmole TBABF4 as supporting electrolyte........109
Figure 2.39 Estimation of fluorescence switching time of (a) diOMe-TPA-CN between 2.3 (on) and -0.1 V (off) monitored at 545 nm (λex = 408 nm), and (b) diOMe-TPA-CNBr between 2.4 (on) and -0.1 V (off) monitored at 551 nm (λex = 413 nm). Fluorescence switching responses of (c) diOMe-TPA-CN and (d) diOMe-TPA-CNBr at different step cycle times of 360, 60, 30, 20, and 10 sec........110
Figure 2.40 (a) PL spectra as applying voltage between 0 and 1.8 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of diOMe-TPA-CN/HV gel-type device without any supporting electrolyte...............112
Figure 2.41 (a) PL spectra as applying voltage between 0 and 1.8 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of diOMe-TPA-CNBr/HV gel-type device without any supporting electrolyte........112
Figure 2.42 Estimation of fluorescence switching time of (a) diOMe-TPA-CN/HV between 1.8 (on) and -0.1 V (off) monitored at 545 nm (λex = 408 nm), and (b) diOMe-TPA-CNBr/HV between 1.8 (on) and -0.1 V (off) monitored at 551 nm (λex = 413 nm). Fluorescence switching responses of (c) diOMe-TPA-CN/HV and (d) diOMe-TPA-CNBr/HV at different step cycle times of 360, 60, 30, 20, and 10 sec........113
Figure 2.43 EFC switching of (a) diOMe-TPA-CN and (b) diOMe-TPA-CNBr with a cycle time of 30 sec............114
Figure 2.44 Absorbance spectrum of gel-type EFCDs based on (a) 0.75 μmole diOMe-TPA-CN and 1.5 μmole HV and (b) 1.5 μmole diOMe-TPA-CN and 1.5 μmole HV at the applied potential from 0 – 1.8 V. Devices are ITO glasses with 2 x 2 cm2 active area in about 0.05 mL PC...............117
Figure 2.45 (a) PL spectra as applying voltage between 0 and 1.8 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of 0.75 μmole diOMe-TPA-CN and 1.5 μmole HV gel-type device without any supporting electrolyte...............119
Figure 2.46 (a) PL spectra as applying voltage between 0 and 1.8 V, (b) applied voltage vs PL intensity and contrast diagram and (c) electrofluorochromic behavior of 1.5 μmole diOMe-TPA-CN and 1.5 μmole HV gel-type device without any supporting electrolyte...............119
Figure 2.47 Estimation of fluorescence switching time of (a) 0.75 μmole diOMe-TPA-CN and 1.5 μmole HV and (b) 1.5 μmole diOMe-TPA-CN and 1.5 μmole HV between 1.8 (on) and -0.1 V (off) monitored at 545 nm (λex = 408 nm). Fluorescence switching responses of (c) 0.75 μmole diOMe-TPA-CN and 1.5 μmole HV and (d) 1.5 μmole diOMe-TPA-CN and 1.5 μmole HV at different step cycle times of 360, 60, 30, 20, and 10 sec........120
Figure 3.1 1H-NMR spectrum of TPA-Py-2-Br in DMSO-d6...............137
Figure 3.2 1H-1H COSY spectrum of TPA-Py-2-Br in DMSO-d6...............137
Figure 3.3 13C-NMR spectrum of TPA-Py-2-Br in DMSO-d6...............138
Figure 3.4 13C-1H HSQC spectrum of TPA-Py-2-Br in DMSO-d6...............138
Figure 3.5 1H-NMR spectrum of TPA-Py-2-BF4 in DMSO-d6...............139
Figure 3.6 13C-NMR spectrum of TPA-Py-2-BF4 in DMSO-d6...............139
Figure 3.7 FTIR spectra of TPA-Py-2-Br (black) and TPA-Py-2-BF4 (red)...............142
Figure 3.8 1H-NMR spectrum of TPA-Py-7-Br in DMSO-d6...............141
Figure 3.9 1H-1H COSY spectrum of TPA-Py-7-Br in DMSO-d6...............141
Figure 3.10 13C-NMR spectrum of TPA-Py-7-Br in DMSO-d6...............142
Figure 3.11 13C-1H HSQC spectrum of TPA-Py-7-Br in DMSO-d6...............142
Figure 3.12 1H-NMR spectrum of TPA-Py-7-BF4 in DMSO-d6...............143
Figure 3.13 13C-NMR spectrum of TPA-Py-7-BF4 in DMSO-d6...............143
Figure 3.14 FTIR spectra of TPA-Py-7-Br (black) and TPA-Py-7-BF4 (red)...............144
Figure 3.15 1H-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO-d6...............145
Figure 3.16 1H-1H COSY spectrum of diOMe-TPA-Py-2-Br in DMSO-d6...............145
Figure 3.17 13C-NMR spectrum of diOMe-TPA-Py-2-Br in DMSO-d6...............146
Figure 3.18 13C-1H HSQC spectrum of diOMe-TPA-Py-2-Br in DMSO-d6...............146
Figure 3.19 1H-NMR spectrum of diOMe-TPA-Py-2-BF4 in DMSO-d6...............147
Figure 3.20 13C-NMR spectrum of diOMe-TPA-Py-2-BF4 in DMSO-d6...............147
Figure 3.21 FTIR spectra of diOMe-TPA-Py-2-Br (black) and diOMe-TPA-Py-2-BF4 (red)...............148
Figure 3.22 1H-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO-d6...............149
Figure 3.23 1H-1H COSY spectrum of diOMe-TPA-Py-7-Br in DMSO-d6...............149
Figure 3.24 13C-NMR spectrum of diOMe-TPA-Py-7-Br in DMSO-d6...............150
Figure 3.25 13C-1H HSQC spectrum of diOMe-TPA-Py-7-Br in DMSO-d6...............150
Figure 3.26 1H-NMR spectrum of diOMe-TPA-Py-7-BF4 in DMSO-d6...............151
Figure 3.27 13C-NMR spectrum of diOMe-TPA-Py-7-BF4 in DMSO-d6...............151
Figure 3.28 FTIR spectra of diOMe-TPA-Py-7-Br (black) and diOMe-TPA-Py-7-BF4 (red)...............152
Figure 3.29 Absorption spectra of TPA-Py series in (a) DMSO solutions (10 μM) (b) solid state and diOMe-TPA-Py series in (c) DMSO solutions (10 μM) (d) solid state........155
Figure 3.30 PL spectra of of TPA-Py series in (a) DMSO solutions (10 μM) (b) solid state and diOMe-TPA-Py series in (c) DMSO solutions (10 μM) (d) solid state........155
Figure 3.31 Absorption and PL spectra of (a) TPA-Py-2-Br, (b) TPA-Py-2-BF4, (c) TPA-Py-7-Br and (d) TPA-Py-7-BF4 in dilute DMSO solution (10 μM) and solid state.........156
Figure 3.32 Absorption and PL spectra of (a) diOMe-TPA-Py-2-Br, (b) diOMe-TPA-Py-2-BF4, (c) diOMe-TPA-Py-7-Br and (d) diOMe-TPA-Py-7-BF4 in dilute DMSO solution (10 μM) and solid state...............156
Figure 3.33 (a) Photos taken under UV light of TPA-Py-2-Br in different water/DMSO fractions. (b) PL spectra of TPA-Py-2-Br in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of TPA-Py-2-Br. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 449 nm...............160
Figure 3.34 (a) Photos taken under UV light of TPA-Py-2-BF4 in different water/DMSO fractions. (b) PL spectra of TPA-Py-2-BF4 in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of TPA-Py-2-BF4. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 449 nm...............160
Figure 3.35 (a) Photos taken under UV light of TPA-Py-7-Br in different water/DMSO fractions. (b) PL spectra of TPA-Py-7-Br in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of TPA-Py-7-Br. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 451 nm...............161
Figure 3.36 (a) Photos taken under UV light of TPA-Py-7-BF4 in different water/DMSO fractions. (b) PL spectra of TPA-Py-7-BF4 in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of TPA-Py-7-BF4. I0 = Emission intensity in pure DMSO solution (10 μM). λex :451 nm...............161
Figure 3.37 (a) Photos taken under UV light of diOMe-TPA-Py-2-Br in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-Py-2-Br in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of diOMe-TPA-Py-2-Br. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 463 nm...............162
Figure 3.38 (a) Photos taken under UV light of diOMe-TPA-Py-2-BF4 in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-Py-2-BF4 in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of diOMe-TPA-Py-2-BF4. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 463 nm...............162
Figure 3.39 (a) Photos taken under UV light of diOMe-TPA-Py-7-Br in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-Py-7-Br in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of diOMe-TPA-Py-7-Br. I0 = Emission intensity in pure DMSO solution (10 μM). λex: 466 nm...............163
Figure 3.40 (a) Photos taken under UV light of diOMe-TPA-Py-7-BF4 in different water/DMSO fractions. (b) PL spectra of diOMe-TPA-Py-7-BF4 in DMSO and water/DMSO solutions with different water fractions (fw). (c) Plot of relative emission intensity (I/I0) versus different composition of aqueous mixtures of diOMe-TPA-Py-7-BF4. I0 = Emission intensity in pure DMSO solution (10 μM). λex : 466 nm................163
Figure 3.41 Cyclic voltammetry diagrams (scan rate: 50 mV/s) of (a) TPA-Py-2-Br, (b) TPA-Py-2-BF4, (c) TPA-Py-7-Br, (d) TPA-Py-7-BF4, (e) diOMe-TPA-Py-2-Br, (f) diOMe-TPA-Py-2-BF4, (g) diOMe-TPA-Py-7-Br and (h) diOMe-TPA-Py-7-BF4 in DMF (10-3 M) containing 0.1 M of TBAP as the electrolyte and using a platinum net as the working electrode........165
Figure 3.42 Cyclic voltammetric diagram (scan rate: 50 mV/s) of (a) TPA-Py-2-BF4, (b) TPA-Py-7-BF4, (c) diOMe-TPA-Py-2-BF4 and (d) diOMe- TPA-Py-7-BF4. Elecrofluorochromic materials (10-3 M) was dissolved in 0.1 M of TBABF4/PC...............168
Figure 3.43 Absorbance spectrum and photos of TPA-Py-2-BF4 at the applied potential between 0 – 1.3 V during oxidation and from 0 to -1.5 V during reduction. TPA-Py-2-BF4 (10-3 M) was dissolved in 0.1 M of TBABF4/PC........170
Figure 3.44 Absorbance spectrum and photos of TPA-Py-7-BF4 at the applied potential between 0 – 1.3 V during oxidation and from 0 to -1.6 V during reduction. TPA-Py-7-BF4 (10-3 M) was dissolved in 0.1 M of TBABF4/PC........170
Figure 3.45 Absorbance spectrum and photos of diOMe-TPA-Py-2-BF4 at the applied potential between 0 – 1.2 V during oxidation and from 0 to -1.2 V during reduction. diOMe-TPA-Py-2-BF4 (10-3 M) was dissolved in 0.1 M of TBABF4/PC........171
Figure 3.46 Absorbance spectrum and photos of diOMe-TPA-Py-7-BF4 at the applied potential between 0 – 1.2 V during oxidation and from 0 to -1.2 V during reduction. diOMe-TPA-Py-7-BF4 (10-3 M) was dissolved in 0.1 M of TBABF4/PC........171
Figure 3.47 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of TPA-Py-2-BF4 after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........173
Figure 3.48 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of TPA-Py-7-BF4 after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........173
Figure 3.49 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of diOMe-TPA-Py-7-BF4 after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution........174
Figure 3.50 (a) Repetitive cyclic voltammogram (scan rate: 50 mV/s) and (b) differential pulse voltammogram (scan rate: 5 mV/s; pulse amplitude: 50 mV; pulse width: 50 ms; pulse period: 0.2 s) of diOMe-TPA-Py-7-BF4 after 50 cycles and 100 cycles at a concentration of 10-3 M in 0.1 M TBABF4/PC solution.......174
Scheme 1.1 Electrochemical reaction of lithium cation.....8
Scheme 1.2 Mechanism of cationic process............9
Scheme 1.3 Mechanism of anionic process............9
Scheme 1.4 Mechanism of electrolyte containing small alkali ions............9
Scheme 1.5 EC process of Prussian Blue to Prussian green............11
Scheme 1.6 EC process of Prussian Blue to Prussian brown............11
Scheme 1.7 EC process of Prussian Blue to Prussian white...........11
Scheme 2.1 Synthetic routes of TPA-CN, TPA-CNBr, diOMe-TPA-CN and diOMe-TPA-CNBr......70
Scheme 3.1 Synthetic routes of TPA-Py-n-Br, TPA-Py-n-BF4, diOMe-TPA-Py-n-Br and diOMe-TPA-Py-n-BF4.......136
dc.language.isoen
dc.subject聚集誘導發光zh_TW
dc.subject陰離子與碳鏈數效應zh_TW
dc.subjectα-苯基肉桂?zh_TW
dc.subject電致變色發光元件zh_TW
dc.subject?啶鹽類zh_TW
dc.subjectelectrofluorochromic deviceen
dc.subjectanion and alkyl chain length effecten
dc.subjectaggregation-induced emissionen
dc.subjectpyridinium saltsen
dc.subjectα-cyanostilbeneen
dc.title含二苯胺之α-苯基肉桂腈衍生物之設計與合成及其電致變色發光元件之應用zh_TW
dc.titleDesign and Synthesis of Diphenylamine-Based α-Cyanostilbene Derivatives for Electrofluorochromic Device Applicationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭勝輝(Sheng-Huei Hsiao),龔宇睿(Yu-Ruei Kung),許聯崇(Lien-Chung Hsu),陳志堅(Jyh-Chien Chen)
dc.subject.keyword聚集誘導發光,電致變色發光元件,α-苯基肉桂?,?啶鹽類,陰離子與碳鏈數效應,zh_TW
dc.subject.keywordaggregation-induced emission,electrofluorochromic device,α-cyanostilbene,pyridinium salts,anion and alkyl chain length effect,en
dc.relation.page181
dc.identifier.doi10.6342/NTU201803229
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
20.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved