Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72076
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貴生(Guey-Sheng Liou)
dc.contributor.authorHsiang-Ting Linen
dc.contributor.author林湘庭zh_TW
dc.date.accessioned2021-06-17T06:22:07Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-18
dc.identifier.citationChapter1
(1) T. Förster and K. Kasper, Ein Konzentrationsumschlag der Fluoreszenz. Z. Phys. Chem. (Muenchen, Ger.), 1954, 1, 275.
(2) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.
(3) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun. 2009, 4332.
(4) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.
(5) Z. Q. Yan, Z. Y.Yang, H. Wang, A. W. Li, L. P. Wang, H. Yang and B. R. Gao, Spectrochim. Acta Mol. Biomol. Spectros. 2011, 78, 1640.
(6) H. H. Fang, Q. D. Chen, J. Yang, H. Xia, B. R. Gao, J. Feng, Y. G. Ma and H. B. Sun, J. Phys. Chem. C, 2010, 114, 11958.
(7) R. Hu, B. Lager, A. A. Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. P. Cabrera and B. Z. Tang, J. Phys. Chem. C, 2009, 113, 15845.
(8) W. Qin, D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu and B. Z. Tang, Adv. Funct. Mater. 2012, 22, 771.
(9) T. Mutai, H. Sawatani, T. Shida, H. Shono and K. Araki, J. Org. Chem. 2013, 78, 2482.
(10) Y. Shigemitsu, T. Mutai, H. Houjou and K. Araki, J. Phys. Chem. A, 2012, 116, 12041.
(11) R. Wei, P. Song and A. Tong, J. Phys. Chem. C, 2013, 117, 3467.
(12) A. Eisfeld and J. S. Briggs, Chem. Phys. 2006, 324, 376.
(13) F. Wuerthner, T. E. Kaiser and C. R. S. Moeller, Angew. Chem. Int. Ed. 2011, 50, 3376.
(14) Y. Wang, T. Liu, L. Bu, J. Li, C. Yang, X. Li, Y. Tao and W. Yang, J. Phys. Chem. C, 2012, 116, 15576.
(15) B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410.
(16) J. W. Chen, C. C. W. Law, J. W. Y. Lam, Y. P. Dong, S. M. F. Lo, I. D. Williams, D. B. Zhu and B. Z. Tang, Chem. Mater. 2003, 15, 1535.
(17) J. Luo, K. Song, F. L. Gu and Q. Miao, Chem. Sci. 2011, 2, 2029.
(18) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater. 2014, 26, 5429.
(19) Y. T. Wu, M. Y. Kuo, Y. T. Chang, C. C. Shin, T. C. Wu, C. C. Tai, T. H. Cheng and W. S. Liu, Angew. Chem. Int. Ed. 2008, 47, 9891.
(20) A. Singh, C. K. Lim, Y. D. Lee, J. H. Maeng, S. Lee, J. Koh and S. Kim, ACS Appl. Mater. Interfaces, 2013, 5, 8881.
(21) J. Zhao, S. Ji, Y. Chen, H. Guo and P. Yang, Phys. Chem. Chem. Phys. 2012, 14, 8803.
(22) T. I. Kim, and H. J. Kang, G. Han and S. J. Chung, Chem. Commun. 2009, 5895.
(23) F. S. Rodembusch, L. F. Campo, V. Stefani and A. Rigacci, J. Mater. Chem. 2005, 15, 1537.
(24) Y. Chen, Y. Lv, Y. Han, B. Zhu, F. Zhang, Z. Bo and C. Y. Liu, Langmuir, 2009, 25, 8548.
(25) J. Mei, Y. Hong, J. W Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater. 2014, 26, 5429.
(26) Y. Hong, J. W. Lam and B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.
(27) X. L. Xin, M. Chen, Y. b. Ai, F. l. Yang, X. L. Li and F. Li, Inorg. Chem. 2014, 53, 2922.
(28) R. Hu, J. L. Maldonado, M. Rodriguez, C. Deng, C. K. W. Jim, J. W. Lam, M. M. F. Yuen, G. R. Ortiz and B. Z. Tang, J. Mater. Chem. 2012, 22, 232.
(29) W. Wu, S. Ye, R. Tang, L. Huang, Q. Li, G. Yu, Y. Liu, J. Qin and Z. Li, Polymer, 2012, 53, 3163.
(30) J. Shi, Y. Wu, S. Sun, B. Tong, J. Zhi and Y. Dong, J. Polym. Sci. Polym. Chem. 2013, 51, 229.
(31) X. Guan, D. Zhang, L. Meng, Y. Zhang, T. Jia, Q. Jin, Q. Wei, D. Lu and H. Ma, Ind. Eng. Chem. Res. 2017, 56, 680.
(32) L. Qian, B. Tong, J. Shen, J. Shi, J. Zhi, Y. Q. Dong, F. Yang, Y. P. Dong, J. W. Y. Lam, Y. Liu and B. Z. Tang, J. Phys. Chem. B, 2009, 113, 9098.
(33) A. Qin, J. W. Y. Lam and B. Z. Tang, Prog. Polym. Sci. 2012, 37, 182.
(34) R. Hu, N. L. C. Leung and B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494.
(35) B. Yang, X. Zhang, X. Zhang, Z. Huang, Y. Wei and L. Tao, Mater. Today, 2016, 19, 284.
(36) Y. Liu, X. Chen, Y. Lv, S. Chen, J. W. Y. Lam, F. Mahtab, H. S. Kwok, X. Tao and B. Z. Tang, Chem. Eur. J. 2012, 18, 9929.
(37) P. Lu, J. W. Y. Lam, J. Liu, C.K.W. Jim, W. Yuan, N. Xie, Y. Zhong, Q. Hu, K. S. Wong, K. K. L. Cheuk and B. Z. Tang, Macromol Rapid Commun. 2010, 31, 834.
(38) B. Xu, J. Zhang, H. Fang, S. Ma, Q. Chen, H. Sun, C. Im and W. Tian, Polym. Chem. 2014, 5, 479.
(39) H. J. Yen, C. J. Chen and G. S. Liou, Chem. Commun. 2013, 49, 630.
(40) H. J. Yen, J. H. Wu, W. C. Wang and G. S. Liou, Adv. Opt. Mater. 2013, 1, 668.
(41) J. H. Wu and G. S. Liou, Polym. Chem. 2015, 6, 5225.
(42) J. H. Wu, W. C. Chen and G. S Liou, Polym. Chem. 2016, 7, 1569.
(43) J. Bartoll, 9th Int. Conference on NDT of Art, 2008.
(44) M. Weil and W. D. Schubert, Newsletter, 2013, 1.
(45) J. R. Platt, J. Chem. Phys. 1961, 34, 862.
(46) S. K. Deb, Appl. Opt. 1969, 8 Suppl. 1, 192.
(47) B. W. Faughnan, R. S. Crandall and P. M. Heyman, RCA Rev. 1975, 36, 177.
(48) H. N. Hersh, W. E. Kramer and J. H. Mcgee, Appl. Phys. Lett. 1975, 27, 646.
(49) R. J. Colton, A. M. Guzman and J. W. Rabalais, J. Appl. Phys. 1978, 49, 409.
(50) S. K. Mohapatra, J. Electrochem. Soc. 1978, 125, 284.
(51) S. Gottesfeld and J. D. E. Mcintyre, J. Electrochem. Soc. 1979, 126, 742.
(52) G. K. Wertheim and A. Rosencwaig, J. Chem. Phys. 1971, 54, 3235.
(53) Y. Hara and S. Minomura, J. Chem. Phys. 1974, 61, 5339.
(54) V. D. Neff, J. Electrochem. Soc. 1978, 125, 886.
(55) Y. Wang, E. L. Runnerstrom and D. J. Milliron, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 283.
(56) M. Morita, J. Polym. Sci. Polym. Phys. 1994, 32, 231.
(57) R. J. Mortimer, Electrochim. Acta, 1999, 44, 2971.
(58) R. J. Mortimer, Annu. Rev. Mater. Res. 2011, 41, 241.
(59) C. G. Granqvist, Handbook of inorganic electrochromic materials, Elsevier, Amsterdam; New York, 1995.
(60) W. C. Dautremontsmith, Displays, 1982, 3, 3.
(61) W. C. Dautremontsmith, Displays, 1982, 3, 67.
(62) S. K. Deb, Phil. Mag. 1973, 27, 801.
(63) S. K. Deb, Sol. Energ. Mater. Sol. Cells, 1995, 39, 191.
(64) S. K. Deb, Sol. Energ. Mater. Sol. Cells, 2008, 92, 245.
(65) D. Ma, T. Li, Z. Xu, L. Wang and J. Wang, Sol. Energ. Mater. Sol. Cells, 2017, 177, 51.
(66) D. Emin, Phys. Rev. B, 1993, 48, 13691.
(67) L. D. Landau, Phys. Z. Sowjetunion, 1993, 3, 644.
(68) J. A. Creighton and D. G. Eadon, J. Chem. Soc. Faraday Trans. 1991, 87, 3881.
(69) Y. Wang and G. Z. Cao, Chem. Mater. 2006, 18, 2787.
(70) W. J. Wang, H. Y. Wang, S. Q. Liu and J. H. Huang, J. Solid State Electrochem. 2012, 16, 2555.
(71) S. Jouanneau, A. L. La Salle, A. Verbaere and D. Guyomard, J. Electrochem. Soc. 2005, 152, A1660.
(72) N. S. Choi, J. S. Kim, R. Z. Yin and S. S. Kim, Mater. Chem. Phys. 2009, 116, 603.
(73) T. Chirayil, P. Y. Zavalij and M. S. Whittingham, Chem. Mater. 1998, 10, 2629.
(74) K. Zhu, X. Yan, Y. Q. Zhang, Y. H. Wang, A. Y. Su, X. F. Bie, D. Zhang, F. Du, C. Z. Wang, G. Chen and Y. J. Wei, ChemPlusChem, 2014, 79, 447.
(75) J. Wu, J. Cao,W. Q. Han, A. Janotti and H. C. Kim, Functional Metal Oxide Nanostructures, SpringerLink, New York; New York, 2012.
(76) S. S. Kim, H. Ikuta and M. Wakihara, Solid State Ionics, 2001, 139, 57.
(77) S. Denis, E. Baudrin, M. Touboul and J. M. Tarascon, J. Electrochem. Soc. 1997, 144, 4099.
(78) D. Guyomard, C. Sigala, A. L. G. La Salle and S. Y. Piffard, J. Power Sourc. 1997, 68, 692.
(79) C. R. Xiong, A. E. Aliev, B. Gnade and K. J. Balkus Jr, ACS Nano, 2008, 2, 293.
(80) B. J. Coe, J. A. Harris, B. S. Brunschwig, I. Asselberghs, K. Clays, J. Garin and J. Orduna, J. Am. Chem. Soc. 2005, 127, 13399.
(81) N. R. de Tacconi, K. Rajeshwar and R. O. Lezna, Chem. Mater. 2003, 15, 3046-3062.
(82) K. Itaya, I. Uchida and V. D. Neff, Accounts Chem. Res. 1986, 19, 162.
(83) R. J. Mortimer, D. R. Rosseinsky and P. M. S. Monk, Electrochromic materials and devices, 2015.
(84) H. Ko, S. Kim, H. Lee and B. Moon, Adv. Funct. Mater. 2005, 15, 905.
(85) L. C. Cao, M. Mou and Y. Wang, J. Mater. Chem. 2009, 19, 3412.
(86) J. A. Kerszulis, K. E. Johnson, M. Kuepfert, D. Khoshabo, A. L. Dyer and J. R. Reynolds, J. Mater. Chem. C, 2015, 3, 3211.
(87) J. A. Kerszulis, C. M. Amb, A. L. Dyer and J. R. Reynolds, Macromolecules, 2014, 47, 5462.
(88) C. M. Amb, A. L. Dyer and J. R. Reynolds, Chem. Mater. 2011, 23, 397.
(89) J. C. Lai, X. R. Lu, B. T. Qu, F. Liu, C. H. Li and X. Z. You, Org. Electron. 2014, 15, 3735.
(90) S. H. Hsiao and H.Y. Lu, Polymers, 2017, 9, 708.
(91) G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto and Y. Imai, J. Polym. Sci. Polym. Chem. 2002, 40, 3815.
(92) G. S. Liou and S. H. Hsiao, J. Polym. Sci. Polym. Chem. 2003, 41, 94.
(93) S. H. Hsiao, C. W. Chen and G. S. Liou, J. Polym. Sci. Polym. Chem. 2004, 42, 3302.
(94) T. H. Su, S. H. Hsiao and G. S. Liou, J. Polym. Sci. Polym. Chem. 2005, 43, 2085.
(95) S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules, 2005, 38, 307.
(96) R. F. Nelson and R. N. Adams, J. Am. Chem. Soc. 1968, 90, 3925.
(97) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy and R. N. Adams, J. Am. Chem. Soc. 1966, 88, 3498.
(98) C. W. Chang and G. S. Liou, J. Mater. Chem. 2008, 18, 5638.
(99) C. W. Chang, C. H. Chung and G. S. Liou, Macromolecules, 2008, 41, 8441.
(100) G. S. Liou, S. H. Hsiao, N. K. Huang and Y. L. Yang, Macromolecules, 2006, 39, 5337.
(101) G. S. Liou, S. H. Hsiao and T. H. Su, J. Mater. Chem. 2005, 15, 1812.
(102) G. S. Liou, H. Y. Lin and H. J. Yen, J. Mater. Chem. 2009, 19, 7666.
(103) H. J. Yen, H. Y. Lin and G. S. Liou, Chem. Mater. 2011, 23, 1874.
(104) H. J. Yen and G. S. Liou, Chem. Mater. 2009, 21, 4062.
(105) G. S. Liou and H. Y. Lin, Macromolecules, 2009, 42, 125.
(106) C. W. Chang, G. S. Liou and S. H. Hsiao, J. Mater. Chem. 2007, 17, 1007.
(107) H. J. Yen, K. Y. Lin and G. S. Liou, J. Mater. Chem. 2011, 21, 6230.
(108) H. J. Yen, C. J. Chen and G. S. Liou, Adv. Funct. Mater. 2013, 23, 5307.
(109) Y. W. Chuang, H. J. Yen, J. H. Wu and G. S. Liou, ACS Appl. Mater. Interfaces, 2014, 6, 3594.
(110) L. C. Lin, H. J. Yen, Y. R. Kung, C. M. Leu, T. M. Lee and G. S. Liou, J. Mater. Chem. C, 2014, 2, 7796.
(111) H. J. Yen, C. L. Tsai, S. H. Chen and G. S. Liou, Macromol. Rapid Commun. 2017, 38, 1600715
(112) Y. Ling, C. L. Xiang and G. Zhou, J. Mater. Chem. C, 2017, 5, 290.
(113) D. C. Huang, J. T. Wu, Y. Z. Fan and G. S. Liou J. Mater. Chem. C, 2017, 5, 9370.
(114) S. J. Toal, K.A. Jones, D. Magde and W. C. Trogler, J. Am. Chem. Soc. 2005, 127, 11661.
(115) J. You, J. Kim, T. Park, B. Kim and E. Kim, Adv. Funct. Mater. 2012, 22, 1417.
(116) S. Seo, Y. Kim, J. You, B. D. Sarwade, P. P. Wadgaonkar, S. K. Menon, A. S. More and E. Kim, Macromol. Rapid Commun. 2011, 32, 637.
(117) H. Kobayashi and P. L. Choyke, Acc. Chem. Res. 2011, 44, 83.
(118) Y. Lee, S. Park, S. W. Han, T. G. Lim and W. G. Koh, Biosens. Bioelectron. 2012, 35, 243.
(119) R. A. Bissell, A. P. De Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. Sandanayake, Chem. Soc. Rev. 1992, 21, 187.
(120) W. R. Browne,M. M. Pollard, B. de lange, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 12412.
(121) C. Yun, J. You, J. Kim, J. Huh and E. Kim, J. Photochem. Photobiol. C Photochem. Rev. 2009, 10, 111.
(122) C. Yun, S. Seo and E. Kim, J. Nanosci. Nanotechnol. 2010, 10, 6850.
(123) S. K. Ray, S. Maikap, W. Banerjee and S. Das, J. Phys. Appl. Phys. 2013, 46, 153001.
(124) A. P. de Silva and N. D. McClenaghan, Chem. Eur. J. 2004, 10, 574.
(125) A. Credi, Angew. Chem. Int. Ed. 2007, 46, 5472.
(126) P. Remon, M. Balter, S. Li, J.Andreasson and U. Pischel, J. Am. Chem. Soc. 2011, 133, 20742.
(127) A. P. de Silva and S.Uchiyama, Top. Curr. Chem. 2011, 300, 1.
(128) J. Kim, J. You and E. Kim, Macromolecules, 2010, 43, 2322.
(129) Y. Kim, Y. Kim, S.Kim and E. Kim, ACS Nano, 2010, 4, 5277.
(130) A. Koppelhuber and O. Bimber, Opt.Express, 2013, 21, 4796.
(131) P. Audebert and F. Miomandre, Chem. Sci. 2013, 4, 575.
(132) R. Abbel, R. van der Weegen, W. Pisula, M. Surin, P. Leclere, R. Lazzaroni, E.W. Meijer and A. P. H. J. Schenning, Chem. Eur. J. 2009, 15, 9737.
(133) Y. Sagara and T.Kato, Angew. Chem. Int. Ed. 2011, 50, 9128.
(134) C. Li, Y. Zhang, J. Hu, J. Cheng and S. Liu, Angew. Chem. Int. Ed. 2010, 49, 5120.
(135) J. K. Sun, L. X. Cai, Y. J. Chen, Z. H. Li and J. Zhang, Chem. Commun. 2011, 47, 6870.
(136) C. D. Geddes and J. R. Lakowicz, in Top. Fluoresc. Spectrosc. 2005, 9, 189.
(137) V. Goulle, A. Harriman and J. M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1034.
(138) M. Dias, P. Hudhomme, E. Levillain, L. Perrin, Y. Sahin, F. X. Sauvage and C. Wartelle, Electrochem. Commun. 2004, 6, 325.
(139) Y. Kim, E. Kim, G. Clavier and P. Audebert, Chem. Commun. 2006, 3612.
(140) P. Audebert and F. Miomandre, Chem. Sci. 2013, 4, 575.
(141) H. A. Kutubi, H. R. Zafarani, L. Rassaei and K. Mathwig, Eur. Polym. J. 2016, 83, 478.
(142) Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, J. Electroanal. Chem. 2009, 632, 201.
(143) S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and E. Kim, Adv. Funct. Mater. 2012, 22, 3556.
(144) A. Beneduci, S. Cospito , M. L. Deda and G. Chidichimo, Adv. Funct. Mater. 2015, 25, 1240.
(145) G. Ding, H. Zhou, J. Xu and X. Lu, Chem. Commun. 2014, 50, 655.
(146) H. Lim, S. Seo, C. Park, H. Shin, X. Yang, K. Kanazawa and E. Kim, Opt. Mater. Express, 2016, 6, 1808.
(147) J. Liu, Y. Shi, J. Wu, M. Li, J. Zheng and C. Xu, RSC Adv. 2017, 7, 25444.
(148) C. P. Kuo, C. N. Chuang, C. L. Chang, M. K. Leung, H. Y. Lian and K. C. W. Wu, J. Mater. Chem. C, 2013, 1, 2121.
(149) H. J. Yen and G. S. Liou, Chem. Commun. 2013, 49, 9797.
(150) J. H. Wu and G. S. Liou, Adv. Funct. Mater. 2014, 24, 6422.
Chapter2
(1) Th. Förster and K. Kasper, Z. Phys. Chem. N. F. 1954, 1, 275.
(2) J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu and B. Z. Tang, Chem. Commun. 2001, 0, 1740.
(3) H. Lim, S. Seo, C. Park, H. Shin, X. Yang, K. Kanazawa, and E. Kim, Opt. Mater. Express, 2016, 6, 1808.
(4) J. Liu, Y. Shi, J. Wu, M. Li, J. Zheng and C. Xu, RSC Adv. 2017, 7, 25444.
(5) J. H. Wu and G. S. Liou, Adv. Funct. Mater. 2014, 24, 6422.
(6) Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, J. Electroanal. Chem. 2009, 632, 201.
(7) S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and E. Kim, Adv. Funct. Mater. 2012, 22, 3556.
(8) A. Beneduci, S. Cospito, M. La Deda and G. Chidichimo, Adv. Funct. Mater. 2015, 25, 1240.
(9) H. S. Liu, B. C. Pan, D. C. Huang, Y. R. Kung, C. M. Leu and G. S. Liou, NPG Asia Mater. 2017, 9, e388.
(10) D. C. Huang, J. T. Wu, Y. Z. Fan and G. S. Liou, J. Mater. Chem. C, 2017, 5, 9370.
(11) C. J. Chen, Y. C. Hu and G. S. Liou, Chem. Commun. 2013, 49, 2536.
(12) W. Z. Yuan, P. Lu, S. M. Chen, J. W. Y. Lam, Z. M. Wang, Y. Liu, H. S. Kwok, Y. G. Ma and B. Z. Tang, Adv. Mater. 2010, 22, 2159.
(13) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun. 2009, 0, 4332.
(14) J. Q. Shi, N. Chang, C. H. Li, J. Mei, C. M. Deng, X. L. Luo, Z. P. Liu, Z. S. Bo, Y. Q. Dong and B. Z. Tang, Chem. Commun. 2012, 48, 10675.
(15) R. Hu, N. L. C. Leung and B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494.
(16) H. Tong, Y. N. Hong, Y. Q. Dong, M. Haussler, J. W. Y. Lam, Z. Li, Z. F. Guo, Z. H. Guo and B. Z. Tang, Chem. Commun. 2006, 0, 3705.
(17) Y. Y. Huang, F. Hu, R. Zhao, G. X. Zhang, H. Yang and D. Q. Zhang, Chem. Eur. J. 2014, 20, 158.
(18) L. Liu, G. X. Zhang, J. F. Xiang, D. Q. Zhang and D. B. Zhu, Org. Lett. 2008, 10, 4581.
(19) X. Z. Yan, H. Z. Wang, C. E. Hauke, T. R. Cook, M. Wang, M. L. Saha, Z. X. Zhou, M. M. Zhang, X. P. Li, F. H. Huang and P. J. Stang, J. Am. Chem. Soc. 2015, 137, 15276.
(20) P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau and C. F. Shu, Adv. Funct. Mater. 2007, 17, 3141.3
(21) C. Y. K. Chan, J. W. Y. Lam, Z. J. Zhao, S. M. Chen, P. Lu, H. H. Y. Sung, H. S. Kwok, Y. G. Ma, I. D. Williams and B. Z. Tang, J. Mater. Chem. C, 2014, 2, 4320.
(22) J. Huang, R. L. Tang, T. Zhang, Q. Q. Li, G. Yu, S. Y. Xie, Y. Q. Liu, S. H. Ye, J. G. Qin and Z. Li, Chem. Eur. J. 2014, 20, 5317.
(23) J. J. Guo, X. L. Li, H. Nie, W. W. Luo, R. R. Hu, A. J. Qin, Z. J. Zhao, S. J. Su and B. Z. Tang, Chem. Commun. 2017, 53, 1463.
(24) S. J. Zhen, J. J. Guo, W. W. Luo, A. J. Qin, Z. J. Zhao and B. Z. Tang, J. Photochem. Photobiol. A, 2018, 355, 274.
(25) G.S. Liou, Y. L. Yang, W. C. Chen and Y. O. Su, J. Polym. Sci. Part A*: Polym. Chem. 2007, 45, 3292.
(26) K. Y. Chiu, T. X. Su, J. H. Li, T.H. Lin, G. S. Liou and S. H. Cheng, J. Electroanal. Chem. 2005, 575, 95.
(27) C. W. Chang and G. S. Liou, Org. Electron. 2007, 8, 662.
Chpater3
(1) C. S. Matsumoto, K. Shinoda, H. Matsumoto, K. Seki, E. Nagasaka, T. Iwata and A. Mizota, J. Vision, 2014, 14, 2.
(2) F. M. Tseng, A. C. Cheng and Y. N. Peng, Technol. Forecast. Soc. Change, 2009, 76, 897.
(3) D. E. Mentley, Proc. I.E.E.E. 2002, 90, 453.
(4) E. A. Schaefer, Vogt, Rainer, Brankl, Michael, Zeiner, Michael, Keller, Matthias, Schubert, Werner, Warmuth, Stefan, Kloiber, Thomas, Blume, Doris, Herrmann, Jan,United States Pat., Patent 20150338715, 2015.
(5) J. N. Lin, C. H. Chen, C. W. Su, United States Pat., Patent 20150355514, 2015.
(6) H. J. Yen, K. Y. Lin and G. S. Liou, J. Mater. Chem. 2011, 21, 6230.
(7) S. V. Vasilyeva, P. M. Beaujuge, S. J. Wang, J. E. Babiarz, V. W. Ballarotto and J. R. Reynolds, ACS Appl. Mater. Interfaces, 2011, 3, 1022.
(8) D. Y. Liu, A. D. Chilton, P. J. Shi, M. R. Craig, S. D. Miles, A. L. Dyer, V. W. Ballarotto and J. R. Reynolds, Adv. Funct. Mater. 2011, 21, 4535.
(9) S. Hellstrom, P. Henriksson, R. Kroon, E. G. Wang and M. R. Andersson, Org. Electron. 2011, 12, 1406.
(10) A. L. Dyer, E. J. Thompson and J. R. Reynolds, ACS Appl. Mater. Interfaces, 2011, 3, 1787.
(11) P. J. Shi, C. M. Amb, E. P. Knott, E. J. Thompson, D. Y. Liu, J. G. Mei, A. L. Dyer and J. R. Reynolds, Adv. Mater. 2010, 22, 4949.
(12) E. Unur, P. M. Beaujuge, S. Ellinger, J. H. Jung and J. R. Reynolds, Chem. Mater. 2009, 21, 5145.
(13) P. M. Beaujuge, S. Ellinger and J. R. Reynolds, Nat. Mater. 2008, 7, 795.
(14) C. P. Kuo, C. N. Chuang, C. L. Chang, M. K. Leung, H. Y. Lian, K. C. W. Wu, J. Mater. Chem. C, 2013, 1, 2121.
(15) J. H. Wu and G. S. Liou, Adv. Funct. Mater. 2014, 24, 6422.
(16) J. Liu, Y. Shi, J. Wu, M. Li, J. Zheng and C. Xu, RSC Adv. 2017, 7, 25444.
(17) Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, J. Electroanal. Chem. 2009, 632, 201.
(18) S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and E. Kim, Adv. Funct. Mater. 2012, 22, 3556.
(19) A. Beneduci, S. Cospito, M. La Deda and G. Chidichimo, Adv. Funct. Mater. 2015, 25, 1240.
(20) H. Lim, S. Seo, S. Pascal, Q. Bellier, S. Rigaut, C. Park, E. Kim, Sci. Rep. 2016, 6, 18867.
(21) S. Abraham, S. Mangalath, D. Sasikumar, J. Joseph, Chem. Mater. 2017, 29, 9877.
(22) J. T. Wu, G. S. Liou, Chem. Commun. 201
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72076-
dc.description.abstract本論文包含四個章節,第一章為三苯胺材料之總體緒論。第二章描述將兩種不同聚集發光基團(三苯乙烯與苯并噻吩砜)與三苯胺及其衍生物結合,制備四種具有聚集發光與電活性之三苯胺衍生物。其化合物的溶液態皆呈現低量子效率(Ф=0.2%~4%),反之固態具有高量子發光效率(Ф=25.3%~98.3%)特性。經過500圈的穩定度測試後,三苯胺含雙甲氧基衍生物表現傑出的電穩定性,使其適合應用於電致變色發光元件。此外為了提升電致變色發光元件的效能,陰極材料-庚基紫精做為電荷儲存層,有效降低工作電壓與元件開關的反應時間。
第三章探討TPPA、TPB、NTPPA及NTPB四個化合物的螢光性質,其中分子具有聯苯結構的化合物(TPB與NTPB)呈現突出的螢光性質。NTPB為具有聚集發光特性的化合物,溶液態近乎無光(Ф=1.7%),然而在固態時放出綠色強光(Ф=29.5%)。TPB分子具有獨特光學性質,不論在溶液態(Ф=34.5%)或是固態(Ф=32.4%)皆具有高的量子效率。根據螢光檢測得結果,設計了不同型態的電解質與不同間隙的電致變色發光元件。
第四章為結論。本論文探討與比較三苯胺衍生物之基本特性、光致發光、電化學與電致螢光變色性質。由於其傑出的螢光性質與電化學行為,可應用於不同型態的元件上,增加應用的靈活性。
zh_TW
dc.description.abstractThis study has been separated into four chapters. Frist chapter is general introduction.
In second chapter, tirphenylamine and its derivatives were linked with two high performance AIE gens, triphenylethylene (TPE) or benzo[b]thiophene 1,1-dioxide (BTO), to obtain four AIE- and Redox- active molecules, which displayed low quantum yield (from 0.2% to 4%) in solution, oppositely high quantum yield (from 25.3% to 98.3%) in solid. TPAOMes display excellent electrochemical stability after 500 cyclic voltammetry scans and be candidate for fabricating EFC devices. Further, in order to improve EFC performance, a well-known cathodic material, heptyl viologen (HV), was further introduced into the EFC devices as charge balance agent to reduce the oxidative potential and the recovery time.
In next chapter, TPPA, TPB, NTPPA, and NTPB are investigated their fluorescent properties. The result demonstrated the molecule (TPB and NTPB) with diphenyl linkage show excellent fluorescent performance. NTPB expresses AIE-active properties, nearly no emission in solution (ФPL=1.7%) but strong green fluorescence in solid (ФPL=29.5%). Especially, TPB displays high quantum yield not only in solution (ФPL=34.5%) but also in solid state (ФPL=32.4%). In line with the fluorescent researches, we chose TPB to be EFC materials and design EFC devices with different type of electrolyte (solution and gel) and different gap (120 μm and 60 μm).
Finally, the last chapter is conclusions. The basic characterization, photoluminescent, electrochemical and electrofluorochromic behaviors of these triarylamine derivatives were investigated and compared. Thus, these triarylamine derivatives can be a candidate for different type device to increase the flexibility of application due to their outstanding fluorescent performance and excellent electrochromic behavior
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:22:07Z (GMT). No. of bitstreams: 1
ntu-107-R05549020-1.pdf: 24139887 bytes, checksum: a8e4a5aa75013d897374a525b0648add (MD5)
Previous issue date: 2018
en
dc.language.isoen
dc.subject電致變色zh_TW
dc.subject三苯胺zh_TW
dc.subject聚集發光zh_TW
dc.subject電致變色發光zh_TW
dc.subjectAIEen
dc.subjectelectrochromismen
dc.subjectelectrofluorochromismen
dc.subjecttriphenylamineen
dc.title具聚集發光及電活性三苯胺衍生物之合成與性質研究及其在電變色發光元件之應用zh_TW
dc.titleSynthesis and Characterization of AIE- and Redox- Active Novel Triphenylamine Derivatives for Electrofluorochromic Device Applicationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張嘉文(Cha-Wen Chang),龔宇睿(Yu-Ruei Kung),劉正良(Cheng-Liang Liu),蕭勝輝(Sheng-Huei Hsiao)
dc.subject.keyword聚集發光,三苯胺,電致變色,電致變色發光,zh_TW
dc.subject.keywordAIE,triphenylamine,electrofluorochromism,electrochromism,en
dc.relation.page202
dc.identifier.doi10.6342/NTU201803961
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
23.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved