請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72039
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張倉榮 | |
dc.contributor.author | Wei-Che Tsai | en |
dc.contributor.author | 蔡維哲 | zh_TW |
dc.date.accessioned | 2021-06-17T06:20:20Z | - |
dc.date.available | 2023-08-24 | |
dc.date.copyright | 2018-08-24 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-19 | |
dc.identifier.citation | 1. Chang, T. J., Chen, T. S., Chen, S. H. and Teng, W. S. (2001), A Study on Inundation Scenario Simulation and Rescue Path Planning in Muchar Area, Taipei, Taiwan Water Conservancy, 49, 1, 38-48.
2. Chang, T. J., Wang, C. H., Chen, A. S. (2015), A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas, Journal of Hydrology, 524, 662-679. 3. Chen, A. S., Djordjevic, S., Leandro, J. and Savic, D. (2007), The urban inundation model with bidirectional flow interaction between 2D overland surface and 1D sewer networks, Proceedings of the 8th international conference, Novatech 2013, 1, 465-472. 4. Hsu, M. H., Chen, S. H. and Chang, T. J. (2000), Inundation Simulation for Urban Drainage Basin with Storm Sewer System, Journal of Hydrology, 234, 1-2, 21-37. 5. Hsu, M. H., Chen, S. H. and Chang, T. J. (2002), Dynamic Inundation Simulation of Storm Water Interaction between Sewer System and Overland Flows, Journal of the Chinese Institute of Engineers, 25, 2, 171-177. 6. Huber, W. C. and Dickinson, R. E. (1988), Storm Water Management Model, User’s Manual Ver. IV, U.S. EPA. 7. Johnson, F. L. and Fred, F. M. (1984), Drainage of Highway Pavements (HEC12), Publication FHWA-TS84-202, Centerville, Virginia. 8. Karypis, G. and Kumar, V. (1999), A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing, 20, 1, 359. 9. Lee, S., Nakagawa, H., Kawaike, K. and Zhang, H. (2014), Urban Inundation Simulation Incorporating Sewerage System without Structure Effect, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 57, B, 407-414. 10. Mavriplis, D. J.(1988), Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes, AIAA Journal, 26, 7, 824-831. 11. Mungkasi, S. and Roberts, S. G. (2013), Validation of ANUGA hydraulic model using exact solutions to shallow water wave problems, Journal of Physics: Conference Series, 423, 1, 1-10. 12. Mungkasi, S. and Stephen, G. R. (2011), A Finite Volume Method for Shallow Water Flows on Triangular Computational Grids, Proc. 2011 Int. Conf. Advanced Computer Science and Information System (ICACSIS), 79-84. 13. Néelz, S. and Pender, G. (2013), Benchmarking the latest generation of 2D hydraulic modelling packages, Environment Agency, England. 14. O’Brien, J. S. (2017), FLO-2D Reference Manual Version 2017. 15. Rigby, E. and VanDrie(2008), R., ANUGA: A New Free and Open Source Hydrodynamic Model, Proceedings of Water Down Under 2008, 629-638. 16. Roberts, S., Nielsen, O., Gray, D., Sexton, J. (2015), ANUGA User Manual Release 2.0,Commonwealth of Australia (Geoscience Australia) and the Australian National University. 17. Roesner, L. A., Aldrich, J. A. and Dickinson R. E. (1988), Storm Water Management Model. User's Manual Ver. IV: EXTRAN addendum. U. S. Environmental Protection Agency. 18. Sachi, C. (2009), ANUGA – installation and Testing of new hydraulic model, Griffith School of Engineering, Griffith University. 19. Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., Kim, S., (2017), Flood inundation modelling: A review of methods, recent advances and uncertainty analysis, Environmental Modelling & Software, 90, 201-216. 20. Theo, G. S., Martin, T. and Norman, E. (2004), Analysis and modeling of flooding in urban drainage systems, Journal of Hydrology, 299, 300-311. 21. Toro, E. F. (1992), Riemann problems and the waf method for solving the two-dimensional shallow water equations, Philosophical Transactions of the Royal Society, Series A, 338, 43-68. 22. Vojinovic, Z., Seyoum, S. D., Mwalwaka, J. M. and Price, R. K. (2011), Effects of model schematisation, geometry and parameter values on urban flood modelling, IWA Publishing. 23. Yen, B. C. (1986), Hydraulics of Sewers, Advances in Hydroscience, Vol.14. Academic Press, New York, 1-123. 24. Zoppou, C. and Roberts, S. (1999), Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, Journal of Hydraulic Engineering, 125, 7, 686–695. 25. 文山區公所網站。(https://wsdo.gov.taipei/Default.aspx) 26. 內政部營建署,2010年,雨水下水道設計指南。 27. 內政部營建署,2011年,下水道誌-政府自辦雨水篇。 28. 王嘉和,2015年,新一代都會區地表與雨水下水道水流互動之淹水模擬,國立臺灣大學生物環境系統工程學系博士論文。 29. 吳啟瑞,1993年,八掌溪流域之淹水模擬,國立臺灣大學農業工程學系碩士論文 。 30. 呂育勳,1988年,洪氾區淹水模式之初步研究,國立成功大學水利及海洋工程研究所碩士論文。 31. 林旭信,2005年,都市雨水下水道系統最佳化操作模擬,國立臺灣大學土木工程學研究所博士論文。 32. 陳宣宏,2002年,漫地流與雨水下水道水流交互動態模擬,國立臺灣大學生物環境系統工程學系博士論文。 33. 經濟部水利署,2012年,水利防災年報。 34. 經濟部水利署災害緊急應變系統。 (http://fhy.wra.gov.tw/DMCHYV2/Login.aspx) 35. 廖烜欣,2009年,街道與雨水下水道淹排水模式之研究,國立成功大學水利及海洋工程研究所碩士論文。 36. 臺北市政府,2009年,臺北市都市計畫書-臺北市文山區都市計畫通盤檢討(主要計畫)案。 37. 臺北市政府資料開放平台。(http://data.taipei/) 38. 臺北市積水資訊網站。 (http://demosite.sinotech-eng.com/TpeFloodRecord/) 39. 臺灣大學農業工程學系,1998年,台北都會區淹水區域預測之研究(I)─子計畫五:抽水站與閘門操作對都會區淹水影響之研究(一),行政院國科會研究計畫成果報告。 40. 蔡長泰,2006年,都市雨水下水道功能與改善措施之評估研究,國家科學委員會研究報告,國立成功大學。 41. 蔡長泰、翁俊鴻,2008年,都市建設之淹水影響與改善措施評估研究-總計畫暨子計畫: 都市雨水下水道功能與改善措施之評估研究(II),行政院國科會研究計畫報告,NSC 96-2625-Z-006-002。 42. 謝宗霖,2013年,都會區淹水模式之比較與應用,國立臺灣大學生物環境系統工程學系碩士論文。 43. 顏榮甫、楊昌儒、蔡長泰,2001年,應用地文性淹水模式進行降雨-逕流模擬之研究,臺灣水利48卷4期p.20-41。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72039 | - |
dc.description.abstract | 都會區的淹水多發生於較為低窪的街道區塊或綠地公園,若以過去常用之結構網格進行模擬,雖在網格劃設上較為簡單,但如果要對街道淹水的位置有較為精細的評估,則須提高網格解析度,而在有限的地文資料以及電腦資源下較難有良好的淹水模擬評估結果。
因此,本研究以非結構三角網格進行淹水模擬評估,並在相同網格量級下提出均勻網格以及非均勻網格2種網格建置策略,前者使用大小形狀均勻之網格進行建置,後者沿著街道區塊進行建置並對網格進行加密,藉此獲得更精細的結果。另外,搭配二維漫地流模組與降雨扣減之演算模式、二維漫地流模組結合一維雨水下水道模組之交互演算模式、二維漫地流模組結合一維雨水下水道模組之特殊演算模式進行模擬,共6種組合用以評估各模式於模擬都會區淹水之差異。 本研究以臺北市文山區木柵次集水區為研究區塊,以2場短延時強降雨事件為對象進行分析,結果顯示,非均勻網格在各排水模式中所獲得之偵測率以及精確度都高於均勻網格,因此,非均勻網格設置較適用於都會區淹水模擬評估;此外,考量建物屋頂排水相較於其他排水方式在精確度上相獲得了最高的數值,由此可知為該模式較符合都會區排水機制因而最為精確。 | zh_TW |
dc.description.abstract | Urban flood usually occur in low-lying street areas as well as green areas. In the past, structure mesh is often used to simulate flooding, and if we want to make precise assessment of road flooding, the high-resolution mesh must be considered. However, due to the limited geographical information and computing resource, it's difficult to obtain accurate flood simulation result.
Therefore, we use unstructured meshes to build two types of mesh structure in similar quantity, homogeneous meshes and non-homogeneous meshes, and simulate by finite volume method (FVM) model ANUGA to make flooding simulation assessment. Homogeneous ones has similar mesh density in whole the study area, and non-homogeneous ones has higher resolution in road network than other areas. Besides, we compare these mesh types in (1) rainfall reduction method, which is minus estimated drainage capacity of sewer system from input rainfall data and processes in two-dimensional (2D) overland flow model (OFM), (2) interaction method, which uses manhole as discharge exchange spots between one-dimensional (1D) sewer flow model(SFM) and 2D OFM, (3) special interaction method, which is based on interaction method and allowing rainfall input sewer system directly form building roofs. In this study, we select Muzha drainage basin in Wenshan District, Taipei as the study area and choose two short duration for simulation and analysis. It shows that non-homogeneous meshes has better value of precision than homogeneous ones due to the appropriate mesh structure. Moreover, building roof drainage method has closest flooding prediction to the survey records than other method and the best precision, because it could better reflect the drainage mechanism in urban environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:20:20Z (GMT). No. of bitstreams: 1 ntu-107-R05622004-1.pdf: 9454592 bytes, checksum: 4afba3f8ee60828b6c3774194b4d5f9f (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 都會區淹水模式之發展與演變 2 1.2.2 非結構網格之發展與應用 4 1.3 研究目的 7 1.4 研究流程 7 第二章 研究方法 9 2.1 一維雨水下水道模式 9 2.1.1 地表逕流模組 11 2.1.2 輸水管道模組 15 2.2 二維地表漫地流模式 18 2.2.1 控制方程式 20 2.2.2 演算架構 23 2.2.3 穩定條件 26 2.3 一維與二維模式銜接 27 2.4 淹水模式評估方法 31 2.4.1 準確度 32 2.4.2 偵測率 32 2.4.3 精確度 33 第三章 研究區塊介紹及事件說明 35 3.1 研究區塊概述 35 3.2 地文資料蒐集 37 3.3 水利設施資料 41 3.4 事件說明 45 3.4.1 雨量站資料 45 3.4.2 水位站資料 47 3.4.3 淹水調查範圍 48 第四章 淹水模式說明及分析 50 4.1 網格建置與說明 50 4.2 排水模式說明 52 4.2.1 二維漫地流模組與降雨扣減之演算模式 53 4.2.2 二維漫地流模組結合一維雨水下水道模組之交互演算模式 54 4.2.3 二維漫地流模組結合一維雨水下水道模組之特殊演算模式 55 4.3 淹水模擬結果與分析 56 4.3.1 0612豪雨事件淹水模擬結果 57 4.3.2 0616豪雨事件淹水模擬結果 69 4.3.3 2場豪雨事件淹水模擬結果分析 81 4.4 淹水模擬結果比較 83 4.4.1 均勻及非均勻網格結果比較 83 4.4.2 不同排水模式之模擬結果比較 86 第五章 結論與建議 91 5.1 結論 91 5.2 建議 92 參考文獻 93 | |
dc.language.iso | zh-TW | |
dc.title | 耦合一維下水道模式及二維有限體積漫地流模式ANUGA於都市淹水之應用 | zh_TW |
dc.title | Coupling 1D Sewer Model SWMM and 2D FVM Overland Flow Model ANUGA for Urban Flood Simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許銘熙,高宏名,王嘉和 | |
dc.subject.keyword | 雨水下水道,都市淹水,有限體積法,非均勻網格,交互演算, | zh_TW |
dc.subject.keyword | Storm sewer model,Urban inundation model,Finite volume method,Non-homogeneous meshes,Coupled 1D/2D model, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201802814 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 9.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。