請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72036
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志軒 | |
dc.contributor.author | Yue-Jin Chen | en |
dc.contributor.author | 陳躍今 | zh_TW |
dc.date.accessioned | 2021-06-17T06:20:12Z | - |
dc.date.available | 2018-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-20 | |
dc.identifier.citation | [1] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52.
[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv Eng Mater 6(5) (2004) 299-303. [3] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015). [4] B.S.M.J.-W.Y.S. Ranganathan, High-entropy alloys, (2014 ). [5] G.B.M. Kauffman, I. , The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2 (1997) (2): 1–21 [6] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401-&. [7] 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6. [8] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948. [9] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060. [10] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367. [11] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230. [12] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298. [13] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391. [14] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302. [15] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394. [16] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740. [17] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709. [18] T.Honma, ICOMAT-86 (1986) 709. [19] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152. [20] C.M.W. K.Otsuka, in: Reviews on the Deformation Behavior of Materials, (1977). [21] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981). [22] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [23] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [24] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972). [25] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457-&. [26] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110. [27] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic-Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144. [28] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227. [29] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359. [30] H.C. Ling, R. Kaplow, Phase-Transitions and Shape Memory in Niti, Metall Trans A 11(1) (1980) 77-83. [31] C.M. Wayman, K. Shimizu, I. Cornelis, Transformation Behavior and Shape Memory in Thermally Cycled Tini, Scripta Metall Mater 6(2) (1972) 115-&. [32] F.E. Wang, B.F. Desavage, W.J. Buehler, W.R. Hosler, Irreversible Critical Range in Tini Transition, J Appl Phys 39(5) (1968) 2166-&. [33] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metall Trans 2(10) (1971) 2769-&. [34] O. Mercier, K.N. Melton, Y. Depreville, Low-Frequency Internal-Friction Peaks Associated with the Martensitic Phase-Transformation of Niti, Acta Metall Mater 27(9) (1979) 1467-1475. [35] H.C. Ling, R. Kaplow, Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic Niti, Metall Trans A 12(12) (1981) 2101-2111. [36] E. Goo, R. Sinclair, The B2 to R Transformation in Ti50ni47fe3 and Ti49.5ni50.5 Alloys, Acta Metall Mater 33(9) (1985) 1717-1723. [37] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62. [38] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532. [39] A.P. Thomas duerig, Christine Trpanier, Nitinol, SMST e-Elastic newsletter (2011). [40] K.H. Eckelmeyer, Effect of Alloying on Shape Memory Phenomenon in Nitinol, Scripta Metall Mater 10(8) (1976) 667-672. [41] K.H.P. Wu, Z.; Tseng, H.K.; Biancaniello, F.S., Shape memory effect of the Ni-Ti-Hf high temperature shape memory alloy, (1995). [42] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245. [43] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [44] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226. [45] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi sub 0. 8 Cu sub 0. 2, Bull. Res. Inst. Miner. Dressing Metall. (1987). [46] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40ni-10cu (at-Percent) Alloy, Mater T Jim 31(4) (1990) 262-269. [47] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056. [48] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967. [49] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40ni-10cu (at Percent) Alloy, Mater T Jim 32(9) (1991) 814-820. [50] T.W.D.K.N.M.D. Stöckel, Engineering Aspects of Shape Memory Alloys, (1990) 21. [51] 林鎮川, 國立台灣大學材料科學與工程研究所碩士論文 (1991). [52] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33. [53] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051. [54] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, T Jpn I Met 26(9) (1985) 646-652. [55] G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, Z.Y. Gao, Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys, Intermetallics 72 (2016) 30-35. [56] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120. [57] T. Tadaki, Y. Nakata, K. Shimizu, Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy, T Jpn I Met 28(11) (1987) 883-890. [58] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290. [59] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom-Us 65(12) (2013) 1759-1771. [60] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim-Sci Mat 31(6) (2006) 633-648. [61] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [62] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [63] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238. [64] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater 61(13) (2013) 4887-4897. [65] C. Lee, Master’s thesis, National Tsing Hua University, (2013). [66] P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J Alloy Compd 587 (2014) 544-552. [67] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J Alloy Compd 488(1) (2009) 57-64. [68] F. G.S, T.A.Kosorukova,Y.N.Koval,V.V.Odnosum, Materials Today:Proceedings 2 (2015) S499-S504. [69] F. G.S, T.A.Kosorukova,Y.N.Koval,A.Verhovlyuk, Directions for High-Temperature Shape Memory Alloys' Improvement:Straight Way to High-Entropy Materials?, Shap.Mem.Superelasticity 1 (2015) 400. [70] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24. [71] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235. [72] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci 61 (2014) 1-93. [73] J. Frenzel, A. Wieczorek, I. Opahle, B. Maass, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys, Acta Mater 90 (2015) 213-231. [74] K.C. Atli, I. Karaman, R.D. Noebe, Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Mat Sci Eng a-Struct 613 (2014) 250-258. [75] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, J. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions, Intermetallics 6(4) (1998) 291-301. [76] N.M. Matveeva, Y.K. Kovneristyi, A.S. Savinov, V.P. Sivokha, V.N. Khachin, Martensitic Transformations in the Tipd-Tini System, J Phys-Paris 43(Nc-4) (1982) 249-253. [77] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R.D. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy, Acta Mater 83 (2015) 48-60. [78] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, The Effects of Cold-Rolling on the Martensitic-Transformation of an Equiatomic Tini Alloy, Acta Metallurgica Et Materialia 39(9) (1991) 2069-2080. [79] M. Piao, K. Otsuka, S. Miyazaki, H. Horikawa, Mechanism of the a(S) Temperature Increase by Pre-Deformation in Thermoelastic Alloys, Mater T Jim 34(10) (1993) 919-929. [80] G. Tan, Y.N. Liu, Comparative study of deformation-induced martensite stabilisation via martensite reorientation and stress-induced martensitic transformation in NiTi, Intermetallics 12(4) (2004) 373-381. [81] S.A. Wang, K. Tsuchiya, L. Wang, M. Umemoto, Deformation Mechanism and Stabilization of Martensite in TiNi Shape Memory Alloy, J Mater Sci Technol 26(10) (2010) 936-940. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72036 | - |
dc.description.abstract | 本研究針對Ti40Zr10Ni40Co5Cu5、Ti30Zr20Ni30Co10Cu10、Ti25Zr25(NiCoCu)50五元合金與TiZrHfNiCoCu、(TiZrHf)50Ni25Co10Cu15、(TiZrHf)Ni30.5Co5Cu15六元合金進行研究,探討高熵性質對形狀記憶合金相變態之影響。研究結果顯示六種合金皆無法形成單相固溶體,而是產生單一固溶體與析出物之混合相。影響相變態溫度的主因由加入Co與Hf、Zr的多寡決定,Co會抑制相變態溫度,而Zr、Hf則會提高相變態溫度,其中五元合金Ti40Zr10Ni40Co5Cu5、Ti30Zr20Ni30Co10Cu10、Ti25Zr25(NiCoCu)50及六元合金TiZrHfNiCoCu不產生相變態,而(TiZrHf)50Ni25Co10Cu15與(TiZrHf)Ni30.5Co5Cu15有B19’麻田散體相變態產生,(TiZrHf)50Ni25Co10Cu15爐冷相變態溫度峰值與逆變態溫度峰值分別為-24.0 °C、8.9 °C,固溶處理後相變態溫度峰值升高至-0.3°C、40.6°C,而(TiZrHf)Ni30.5Co5Cu15爐冷相變態溫度與逆變態溫度則為156.2 °C、200.3 °C。兩者熱循環後相變態溫度下降,主要原因為母相與麻田散體相匹配性不佳,在熱循環過程中導入差排所導致。(TiZrHf)50Ni25Co10Cu15¬¬在固溶處理後形狀記憶效應性能提升,可回復應變提高,不可回復應變降低,在650MPa下分別為4.78%、0.38%。(TiZrHf)Ni30.5Co5Cu15為高溫形狀記憶合金,經由時效後可調整變態溫度,500°C時效處理10小時之後之可回復應變為0.35%、可回復應變比為74.47 %,比600°C 時效1小時的可回復應變0.17%、可回復應變比54.84 %好,形狀記憶效應較好。研究結果顯示,(TiZrHf)50Ni25Co10Cu15比富鎳之(TiZrHf)Ni30.5Co5Cu15有更佳的形狀記憶效應。 | zh_TW |
dc.description.abstract | The influence of high entropy effect on Ti40Zr10Ni40Co5Cu5, Ti30Zr20Ni30Co10Cu10, Ti25Zr25(NiCoCu)50, TiZrHfNiCoCu, (TiZrHf)50Ni25Co10Cu15 and (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15 alloys is discussed in this study. All of the alloys form the mixing phases of B2 solid solution and Ti2Ni-like precipitate rather than a single solid solution. The martensitic transformation temperature will decrease by adding cobalt and increase by adding zirconium and hafnium. Martensitic transformation can be observed only in (TiZrHf)50Ni25Co10Cu15 and (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15. The forward and the reverse transformation peaks of furnace-cooled (TiZrHf)50Ni25Co10Cu15 alloy are at -24.0 °C and 8.9 °C, and increase to -0.3 °C and 40.6 °C after solid-solution treatment, respectively. The forward and reverse transformation peaks of furnace-cooled (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15 are 156.2 °C and 200.3 °C. Due to the poor compatibility of austenite and martensite, dislocations are introduced in (TiZrHf)50Ni25Co10Cu15 and (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15 alloys during the thermal cycle, and thus their martensitic transformation temperatures decrease as the number of martensitic transformation increases. The shape memory effect of (TiZrHf)50Ni25Co10Cu15 is improved after solution treatment. Its reversible strain reaches 4.78% and irreversible strain is smaller than 0.38% under 650MPa. (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15¬ is a high temperature shape memory alloy and its transformation temperature can be adjusted by aging treatment. After 500 °C aging for 10 hours, the reversible strain and the reversible strain ratio are 0.35% and 74.47%, respectively, better than 0.17% and 54.84% after 600 °C aging for 1 hour. Finally, (TiZrHf)50Ni25Co10Cu15 has better shape memory effect than Ni-rich (Ti16.5Zr16.5Hf16.5)Ni30.5Co5Cu15¬ alloy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:20:12Z (GMT). No. of bitstreams: 1 ntu-107-R05522743-1.pdf: 16794906 bytes, checksum: e679498a87f0950116c2f29f6bcb2454 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
第一章 前言 1 第二章 文獻探討 2 2-1 形狀記憶合金簡介 2 2-2 形狀記憶特性 2 2-2-1熱彈型麻田散體相變態 2 2-2-2形狀記憶效應 4 2-2-3擬彈性 6 2-3 TiNi基形狀記憶合金 7 2-4不同合金元素影響 8 2-5熱循環對合金之影響 10 2-6 高熵合金簡介 10 2-6-1高熵效應 11 2-6-2緩慢擴散 12 2-6-3晶格扭曲 12 2-6-4雞尾酒效應 13 2-7 高熵形狀記憶合金形成理論 13 第三章 實驗方法 29 3-1 合金配置與熔煉 30 3-2 DSC量測 31 3-3熱循環測試 31 3-4 DMA量測 32 3-4-1三點彎曲測試原理 32 3-5拉伸試驗 33 3-6 SEM觀察 33 3-7 XRD分析 34 3-8 EPMA量測 34 3-9 TEM觀察 34 3-10 壓縮試驗 34 3-11硬度量測 35 3-12奈米壓痕(Nanoindenter)試驗 35 第四章 無麻田散體相變態之合金 42 4-1 高熵性質 42 4-2 DSC 測量結果 42 4-3 顯微組織觀察結果(SEM) 43 4-4晶體結構測量結果(XRD) 43 4-5 硬度測量結果(Vickers Microhardness) 44 第五章 具麻田散體相變態之合金 63 5-1 (TiZrHf)50Ni25Co10Cu15合金之相變態行為 63 5-1-1 Co10合金相變態溫度與相變態行為之測量結果(DSC) 63 5-1-2 熱循環處理對Co10合金之影響 64 5-1-3 Co10合金顯微組織之觀察結果(SEM) 65 5-1-4 Co10 成分分布測量結果(EPMA) 65 5-1-5 Co10合金晶體結構測量結果(XRD) 65 5-1-6 Co10 合金微結構之觀察結果(TEM) 66 5-1-7 Co10合金硬度測量結果(Vickers microhardness) 66 5-1-8 Co10合金形狀記憶效應之測量結果(DMA、拉伸) 67 5-2 (TiZrHf)Ni30.5Co5Cu15合金之相變態行為 68 5-2-1 Co5合金相變態溫度與相變態行為之測量結果(DSC) 68 5-2-2 熱循環處理對Co5合金之影響 68 5-2-3 Co5合金顯微組織之觀察結果(SEM) 69 5-2-4 Co5成分分布測量結果(EPMA) 70 5-2-5 Co5合金晶體結構測量結果(XRD) 70 5-2-6 Co5合金之微結構之觀察結果(TEM) 71 5-2-7 Co5合金硬度測量結果(Vickers Microhardness、nanoindenter) 71 5-2-8 時效對Co5合金產生之影響 72 5-2-9 Co5合金形狀記憶效應之測量結果(DMA、拉伸) 73 5-3 綜合比較 74 5-3-1 高熵性質 74 5-3-2 成分對相變態之影響 74 5-3-3 晶格常數 75 第六章 結論 114 附錄 115 參考文獻 117 | |
dc.language.iso | zh-TW | |
dc.title | (TiZrHf)(NiCoCu)系列擬二元高熵形狀記憶合金之麻田散體相變態行為與機械性質之研究 | zh_TW |
dc.title | Research on Martensitic Transformation Behaviors and Properties of Pseudobinary (TiZrHf)(NiCoCu)-based High Entropy Shape Memory Alloys | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳錫侃,鄭憶中 | |
dc.subject.keyword | 形狀記憶合金,高熵合金,形狀記憶效應,麻田散體相變態,時效熱處理,析出物, | zh_TW |
dc.subject.keyword | Shape memory alloys,High entropy alloys,Shape memory Effect,Martensitic transformation,Aging,Precipitate, | en |
dc.relation.page | 124 | |
dc.identifier.doi | 10.6342/NTU201803832 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 16.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。