Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72035
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳?承
dc.contributor.authorShang-Ru Wuen
dc.contributor.author吳尚儒zh_TW
dc.date.accessioned2021-06-17T06:20:09Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citation1. R. B. D., New ideas in biomaterials science—a path to engineered biomaterials. Journal of Biomedical Materials Research 27, 837-850 (1993).
2. A. Hensten-Pettersen, N. Jacobsen, Perceived side effects of biomaterials in prosthetic dentistry. Journal of Prosthetic Dentistry 65, 138-144 (1991).
3. S. Ramakrishna, J. Mayer, E. Wintermantel, K. W. Leong, Biomedical applications of polymer-composite materials: a review. Composites Science and Technology 61, 1189-1224 (2001).
4. B. D. Ratner, Biomaterials science : an introduction to materials in medicine. (Elsevier/Academic Press, Amsterdam ; Boston, ed. 3rd, 2013), pp. liii, 1519 p.
5. M. Hueso et al., Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy. Kidney Diseases 4, 1-9 (2018).
6. H. Shin, S. Jo, A. G. Mikos, Biomimetic materials for tissue engineering. Biomaterials 24, 4353-4364 (2003).
7. M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, Y. Nishiyama, Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2, 014110 (2010).
8. S. Rungsiyanont, N. Dhanesuan, S. Swasdison, S. Kasugai, Evaluation of biomimetic scaffold of gelatin–hydroxyapatite crosslink as a novel scaffold for tissue engineering: Biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells. Journal of Biomaterials Applications 27, 47-54 (2011).
9. E. M. Leroy et al., Fruit bats as reservoirs of Ebola virus. Nature 438, 575 (2005).
10. G. S. Campos, A. C. Bandeira, S. I. Sardi, Zika Virus Outbreak, Bahia, Brazil. Emerging Infectious Diseases 21, 1885-1886 (2015).
11. A. J. Alanis, Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Archives of Medical Research 36, 697-705 (2005).
12. O. Lazcka, F. J. D. Campo, F. X. Muñoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22, 1205-1217 (2007).
13. G. Kim, H. Vinerean, A. Gaitas, A Novel Pathogen Capturing Device for Removal and Detection. Scientific Reports 7, 5552 (2017).
14. X. Zhao et al., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101, 15027-15032 (2004).
15. E. A. Almand, R. M. Goulter, L.-A. Jaykus, Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H. Journal of microbiological methods 128, 88-95 (2016).
16. S. Matteo, M. Antonella, F. Giuliano, C. Mario, In vitro evaluation of the inflammatory potential of the silk fibroin. Journal of Biomedical Materials Research 46, 382-389 (1999).
17. Y. Cao, B. Wang, Biodegradation of Silk Biomaterials. International Journal of Molecular Sciences 10, 1514 (2009).
18. G. H. Altman et al., Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131-4141 (2002).
19. W. L. S. et al., Effect of processing on silk‐based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials 99B, 89-101 (2011).
20. M. W. Clemens et al., Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement. Plast Reconstr Surg Glob Open 2, e246 (2014).
21. M. S. Zafar, K. H. Al-Samadani, Potential use of natural silk for bio-dental applications. Journal of Taibah University Medical Sciences 9, 171-177 (2014).
22. X. Sheng et al., Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. International Journal of Biological Macromolecules 56, 49-56 (2013).
23. C. Vepari, D. L. Kaplan, Silk as a Biomaterial. Progress in polymer science 32, 991-1007 (2007).
24. G. H. Altman et al., Silk-based biomaterials. Biomaterials 24, 401-416 (2003).
25. B. Lotz, F. Colonna Cesari, The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie 61, 205-214 (1979).
26. Editorial Board. Progress in polymer science 46, IFC (2015).
27. M. Li, C. Zhang, S. Lu, Z. Wu, H. Yan, Study on porous silk fibroin materials: 3. Influence of repeated freeze–thawing on the structure and properties of porous silk fibroin materials. Polymers for Advanced Technologies 13, 605-610 (2002).
28. Y. Tamada, New Process to Form a Silk Fibroin Porous 3-D Structure. Biomacromolecules 6, 3100-3106 (2005).
29. B. Bouma et al., Adhesion mechanism of human β<sub>2</sub>‐glycoprotein I to phospholipids based on its crystal structure. The EMBO Journal 18, 5166-5174 (1999).
30. C. Adlhoch et al., Highly sensitive detection of the group A Rotavirus using Apolipoprotein H-coated ELISA plates compared to quantitative real-time PCR. Virol J 8, 63 (2011).
31. Ç. Ağar et al., β<sub>2</sub>-Glycoprotein I: a novel component of innate immunity. Blood 117, 6939-6947 (2011).
32. E. A. Almand, R. M. Goulter, L. A. Jaykus, Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H. Journal of microbiological methods 128, 88-95 (2016).
33. S. Alexander et al., Activity, disulphate mapping and structural modelling of the fifth domain of human β2-glycoprotein I. FEBS Letters 313, 193-197 (1992).
34. A. Steinkasserer, C. Estaller, E. H. Weiss, R. B. Sim, A. J. Day, Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochemical Journal 277, 387-391 (1991).
35. F. Wang, X.-F. Xia, S.-f. Sui, Human Apolipoprotein H May Have Various Orientations When Attached to Lipid Layer. Biophysical Journal 83, 985-993 (2002).
36. N. C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249-259 (2004).
37. J. Everse, The Structure of Heme Proteins Compounds I and II: Some Misconceptions. Free Radical Biology and Medicine 24, 1338-1346 (1998).
38. A. M. Klibanov, T. M. Tu, K. P. Scott, Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221, 259-261 (1983).
39. V. A. Cooper, J. A. Nicell, Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Research 30, 954-964 (1996).
40. I. Casero, D. Sicilia, S. Rubio, D. Pérez-Bendito, Chemical degradation of aromatic amines by Fenton's reagent. Water Research 31, 1985-1995 (1997).
41. B. Halliwell, Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology 141, 312-322 (2006).
42. B. P. Partlow, M. B. Applegate, F. G. Omenetto, D. L. Kaplan, Dityrosine Cross-Linking in Designing Biomaterials. ACS Biomaterials Science & Engineering 2, 2108-2121 (2016).
43. Y. Liu et al., Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties. Carbohydrate Polymers 118, 70-78 (2015).
44. G. Gellissen et al., Progress in developing methylotrophic yeasts as expression systems. Trends in Biotechnology 10, 413-417 (1992).
45. R. S. Esipov et al., Overexpression of Escherichia coli Genes Encoding Nucleoside Phosphorylases in the pET/Bl21(DE3) System Yields Active Recombinant Enzymes. Protein Expression and Purification 24, 56-60 (2002).
46. S. Tabor, C. C. Richardson, A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences 82, 1074-1078 (1985).
47. F. W. Studier, B. A. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology 189, 113-130 (1986).
48. P. Davanloo, A. H. Rosenberg, J. J. Dunn, F. W. Studier, Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences 81, 2035-2039 (1984).
49. M.-P. Sue, F. M. L., M. Brian, H. L. M., Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249-270 (2005).
50. R. Daly, M. T. Hearn, Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18, 119-138 (2005).
51. Y. Hagihara et al., Aggregation of β2-Glycoprotein I Induced by Sodium Lauryl Sulfate and Lysophospholipids. Biochemistry 41, 1020-1026 (2002).
52. C. Vepari, D. L. Kaplan, Silk as a biomaterial. Progress in polymer science 32, 991-1007 (2007).
53. J. E. Brown et al., Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration. Advanced healthcare materials 6, 10.1002/adhm.201600762 (2017).
54. D.-P. Hong, Y. Hagihara, H. Kato, Y. Goto, Flexible Loop of β2-Glycoprotein I Domain V Specifically Interacts with Hydrophobic Ligands. Biochemistry 40, 8092-8100 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72035-
dc.description.abstract近年來,蠶絲蛋白(silk fibroin)常被用於生醫材料應用,其特點包含良好的機械強度、生物相容性、延展性,並具有良好的材料可修飾性進而可增加生物功能性。本研究以蠶絲蛋白作為生物材料支架,並經由生物製造之酵素修飾方式交聯可吸附多種病原菌之功能性分子,進而建立一個病原菌快速捕捉平台,可望作為新型的病原菌分離與篩選的裝置。具體來說,在蠶絲支架的製備上,我們首先將蠶絲經由冷凍乾燥法製成具多孔狀的蠶絲海綿,使得可比一般平面基質具有較大的孔隙度與作用面積。接著我們進一步調整蠶絲海綿的結構穩定性,經由乙醇處理後,能提升結構的結晶度,增強蠶絲海綿的的穩定性。在功能性修飾部分,我們進一步藉由酵素horseradish peroxidase (HRP)將基因改造之功能性蛋白質apolipoprotein H (ApoH)以二聚化形成雙酪氨酸共價鍵的方式鑲嵌在絲蛋白上。ApoH 為一種人體在免疫急性期會分泌出的載脂蛋白,具有體內先天免疫系功能,能以電荷吸引的特性吸附許多表面帶有負電荷的病原菌,像是病毒、革蘭氏陰性菌,甚至是寄生蟲等等。本研究所建構的病原菌捕捉功能性海綿已經證實可以捕捉大腸桿菌與諾羅病毒,將來將進一步改良此技術平台,預期在未來能夠運用於許多環境或生醫檢測,以及血液透析的病原菌分離醫材等開發。zh_TW
dc.description.abstractSilk fibroin produced from silkworms has been widely used as biomaterials owing to its remarkable mechanical strength, extensibility, biocompatibility, and ease of biofunctionalization. In this research, we engineered the silk fibroin as a novel platform capable of capturing various species of pathogens by functionalizing pathogen targeting moiety. Specifically, we first generated the silk material into a porous silk sponge through the lyophilization procedure, yielding enhanced porosity and accessible surface area. The structural stability of our engineered sponge was further improved with ethanol treatment. Second, the sponge was functionalized with engineered apolipoprotein H (ApoH) by forming di-tyrosine crosslinking through the catalyzation of horseradish peroxidase (HRP). ApoH, an immune acute phase human plasma protein, serves as an innate immune defense system against infection and exhibits broad spectrum of pathogen binding ability, including viruses, Gram-negative bacteria and parasites. Finally, the platform was demonstrated to be effective in E. coli and norovirus binding. We envision the device we fabricated, yet to be tuned up, can potentially as a device for rapid isolation and high throughput screening of pathogens. Additionally, the technique could be further harnessed in hemodialysis for reducing the risk of infection in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:20:09Z (GMT). No. of bitstreams: 1
ntu-107-R05b22057-1.pdf: 4014001 bytes, checksum: 902f7670d35ae0929f2048919e2127fe (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 2
Abstract 3
第一章前言 9
1.1 生醫材料 9
1.2 研究動機 10
1.3 蠶絲蛋白 11
1.3.1 結構與性質 11
1.3.2 蠶絲蛋白支架 12
1.3.3 蠶絲蛋白支架及處理 12
1.4 載脂蛋白 H (Apolipoprotein H, ApoH) 13
1.4.1 載脂蛋白H生理功能 13
1.4.2 載脂蛋白H結構 13
1.5 辣根過氧化酵素(Horseradish peroxidase, HRP) 13
1.5.1 HRP 的結構與催化反應機制 13
1.6 辣根過氧化酵素(Horseradish peroxidase, HRP) 14
1.6.1 HRP 的結構與催化反應機制 14
1.6.2 HRP 應用 16
1.7 實驗設計 17
1.7.1 研究架構 17
1.7.2 欲達成之目標 17
第二章 材料與方法 18
2.1 實驗菌株與培養條件 18
2.1.1 細菌 18
2.1.2 細胞株 18
2.2 培養基 18
2.3 質體建構與轉型株 19
2.3.1 短鏈核酸 (oligo DNA) 設計與合成 19
2.3.2 聚合酶連鎖反應反應試劑、溶液 19
2.3.3 核酸瓊脂膠體電泳分析 20
2.3.4 DNA純化 21
2.3.5 質體DNA之萃取 21
2.3.6 質體與目標基因切割(Digestion) 22
2.3.7 接合(Ligation)反應 22
2.3.8 質體建構 22
2.3.9 勝任細胞製備 24
2.3.10質體轉型反應(Transformation) 25
2.3.11核酸定序 26
2.3.12質體DNA之萃取 26
2.4 多孔性蠶絲海綿支架製備 26
2.4.1蠶絲蛋白水溶液製備 26
2.4.2製備多孔性蠶絲海綿支架 26
2.4.3溶解度實驗 26
2.4.4 X光繞射儀 (X-ray diffraction, XRD) 27
2.4.5掃描式電子顯微鏡觀測 (Scanning Electron Microscope, SEM) 27
2.4.6 FTIR (Fourier Transform Infrared Spectroscopy) 27
2.4.7製備材料 28
2.5 融合蛋白質表現及純化 28
2.5.1 蛋白質表現 28
2.5.2 蛋白質定量 29
2.5.3 反應試劑、溶液 29
2.5.4 融合蛋白純化及分析 30
2.6 蛋白質功能檢測 31
2.7 接合作用測試 32
2.7.1 大腸桿菌抓取能力測試 32
2.7.2 海綿與 ApoH 接合效果測試 32
2.7.3 諾羅病毒抓取能力測試 32
2.7.4 海綿抓取諾羅病毒測試 33
第三章實驗結果 34
3.1 製備及分析多孔性海綿支架結構特性 34
3.1.1以不同濃度乙醇進行處理之海綿支架 34
3.1.2 XRD分析海綿支架之結晶程度 34
3.1.2 ATR-FTIR分析海綿支架之二級結構組成 34
3.1.3分析海綿支架在水溶液中之穩定性 34
3.2 以 HEK-293T 細胞表現融合蛋白 35
3.2.1突變質體構築 35
3.2.2表現細胞株建構 35
3.2.3蛋白質表現、純化和分析 35
3.3 目標蛋白活性測試 36
3.3.1測試載脂蛋白H功能 36
3.4 將目標蛋白以HRP結合至多孔性蠶絲支架上 36
3.5 多孔性蠶絲支架抓取大腸桿菌之效果測試 36
3.6 多孔性蠶絲支架抓取諾羅病毒顆粒之效果測試 37
第四章討論 38
4.1載脂蛋白H ( ApoH )表現 38
4.2 Escherichia coli表達系統 38
4.3 Pichia pastoris表達系統 39
4.4載脂蛋白H ( ApoH )在E.coli BL21DE3及Pichia pastoris表現系統比較 39
4.5接合作用實驗 40
第五章結論 69
第六章未來展望 70
第七章、參考文獻 71
dc.language.isozh-TW
dc.subject蠶絲海綿zh_TW
dc.subject載脂蛋白Hzh_TW
dc.subject病原菌zh_TW
dc.subjectsilk fibroinen
dc.subjectspongeen
dc.subjectApolipoprotein Hen
dc.subjectHRPen
dc.subjectpathogensen
dc.title以功能性蠶絲海綿作為捕捉病原菌的平台zh_TW
dc.titleDeveloping a platform for pathogen capturing by biofunctionalized silk spongesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊振昌,楊大毅
dc.subject.keyword蠶絲海綿,載脂蛋白H,病原菌,zh_TW
dc.subject.keywordsilk fibroin,sponge,Apolipoprotein H,HRP,pathogens,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201803957
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved