Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorLiang-Sin Huangen
dc.contributor.author黃亮心zh_TW
dc.date.accessioned2021-06-17T06:19:29Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citation1. 林家棻。1967。臺灣省農田肥力測定。臺灣省農業試驗所報告。臺灣省農業試驗所刊行。No 28: 第2頁。
2. 范惠茹。2012。探討臺灣代表性土壤利用世界土壤參比系統之問題及其美國土壤分類名稱之對應。國立臺灣大學農業化學系碩士學位論文。
3. 陳怡君。2005。臺東池上地區蛇紋岩土壤中鉻及鎳之生物地質化學特徵。國立屏東科技大學環境工程與科學系碩士學位論文。
4. 陳尊賢、許正一、蔡呈奇。2000。臺灣地區土系分類與代表土系之特性。88年下半年及89年度農業科技「農田土壤管理改進研究之二」計劃。農委會計畫編號: 89科技-1.1-糧-72(1)。期末報告。236頁。
5. 謝兆申、王明果。1991。台灣地區主要土類圖輯。國立中興大學土壤調查試驗中心。
6. Antoniadis, V., Robinson, J.S., Alloway, B.J., (2008) Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71, 759-764.
7. Aydinalp, C., Marinova, S. (2003) Distribution and forms of heavy metals in some agricultural soils. Polish Journal of Environmental Studies 12, 629-633.
8. Babić, M., Radić, S., Cvjetko, P., Roje, V., Pevalek-Kozlina, B., and Pavlica, M. (2009). Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany 91, 166-172.
9. Badawy, S.H., Helal, M.I.D., Chaudri, A.M., Lawlor, K., McGrath, S.P. (2002) Soil solidphase controls lead activity in soil solution. Journal of Environmental Quality 31, 162-167.
10. Beckett, P. H. T. (1964) Studies on Soil Potassium. I. Confirmation of the Ratio Law: Measurent of Potassium Potential, Journal of Soil Science 15, 1-8.
11. Bidoglio, G., Gibson, P.N., Ogorman, M. and Roberts, K.J. (1993) X-ray-absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica Et Cosmochimica Acta 57, 2389-2394.
12. Cheam, V. (2001) Thallium contamination of water in Canada. Water Quality Research Journal of Canada 36, 851-877..
13. Chen, T. T. (1956) Differential thermal analysis and X-ray analysis of certain clay minerals of Taiwan soils. Journal of the Chinese Chemical Society 52, 72-78.
14. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J. andZimmermann., S. (2015) COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research 22, 15188-15194.
15. Cvjetko, P., Cvjetko, I., and Pavlica, M. (2010). Thallium toxicity in humans. Arh Hig Rada Toksikol, 61, 111-119.
16. Dahal, M.P. and Lawrance, G.A. (1996) Adsorption of thallium(I), lead(II), copper(II), bismuth(III) and chromium(III) by electrolytic manganese dioxide. Adsorption Science & Technology 13, 231-240.
17. Davies, M., Figueroa, L., Wildeman, T., and Bucknam, C. (2015). The oxidative precipitation of thallium at alkaline pH for treatment of mining influenced water. Mine Water and the Environment 35, 77-85.
18. DelValls, T.A., Sáenz, V., Arias, A.M., Blasco, J. (1999) Thallium in the marine environment: first ecotoxicological assessments in the guadalquivir estuary and its potential adverse effect on the doñana european natural reserve after the Aznalc óllar mining spill (SW Spain). Ciencias Marinas 25, 161–175.
19. Deng, H.M., Chen, Y.H., Wu, H.H., Liu, T., Wang, Y.L., Wu, G.Y., and Ye, H.P. (2016). Adsorption of Tl(I) on Na–montmorillonite and kaolinite from aqueous solutions. Environmental Earth Sciences, 75, 752-761.
20. Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F.M.G., Verloo, M.G. (2008) Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science 77, 589-602.
21. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., Tack, F.M.G. (2009) Heavy metal mobility and availability in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment 407, 3972-3985.
22. Field, J. A., C. A. Johnson, and J. B. Rose (2006) 'What is emerging'? Environment Science and Technology 40, 7105.
23. Galván-Arzate, S., & Santamaria, A. (1998). Thallium toxicity. Toxicology Letters, 99, 1–13.
24. Gee, G.W. and Bauder, J.W. (1986) Mehtods of soil analysis. Part I 1. Klute (ed), pp. 404-408, Agronomy Monograph.
25. Ghosh, B.N. and Singh, R. D. (2001) Potassium release characteristics of some soils of Uttar Pradesh hills varying in altitude and their relationship with forms of soil K and clay mineralogy. Geoderma. 104, 135-144.
26. Groesslova, Z., Vanek, A., Mihaljevic, M., Ettler, V., Hojdovác, M., Zádorováa, T., et al. (2015). Bioaccumulation ofthallium in a neutral soil as affected by solid-phase association. Journal of Geochemical Exploration, 159, 208–212.
27. Hettiarachchi, G.M., Ryan, J.A., Chaney, R.L., La Fleur, C.M. (2003) Sorption and desorption of cadmium by different fractions of biosolids-amended soils. Journal of Environmental Quality 32, 1684-1693.
28. Hseu, Z. Y., Tsai, H., Hsi, H. C. and Chen, Y. C. (2007) Weathering squences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals 55, 389-401.
29. Huang, X., Li, N., Wu, Q., Long, J., Luo, D., Zhang, P., Yao, Y., Huang, X., Li, D., Lu Y., and Liang, J. (2016). Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage. Environmental Science and Pollution Research 23, 24912-24921.
30. Issa, A.A., Abdel-Basset, R. and Adam, M.S. (1995) Abolition of heavy metal on Kirchneriella lunaris (Chlorophyta) by calcium. Annals of Botany 75, 186-192.
31. Jacobson, A.R., Klitzke, S., McBride, M.B., Baveye, P. and Steenhuis, T.S. (2005a) The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water Air and Soil Pollution 160, 41-54.
32. Jacobson, A.R., McBride, M.B., Baveye, P. and Steenhuis, T.S. (2005) Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment 345, 191-205.
33. Jarvis, S.C., Jones, L.H.P. and Hopper, M.J. (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and Soil 44, 179-191.
34. Kanplan, D.I. and Mattigod, S.V. (1998) Aqueous geochemistry of thalium. In J. O. Nriagu (Ed.), Thallium in the environment (pp. 15-29). New York: Wiley.
35. Karbowska, B. (2016). Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment 188, 640-658.
36. Karbowska, B., Zembrzuski, W., Jakubowska, M., Wojtkowiak, T., Pasieczna, A. and Lukaszewski, Z. (2014) Translocation and mobility of thallium from zinc-lead ores. Journal of Geochemical Exploration 143, 127-135.
37. Kashem, M.A.and Singh, B.R. (2001) Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61, 247-255.
38. Kazantzis, G. (2000). Thallium in the environment and health effects. Environmental Geochemistry and Health, 22, 275–280.
39. Kemper, F.H., Bertram, H.P. Thallium. (1991) Metals and their compounds in the environment: occurrence, analysis, and biological relevance. New York: Weinheim, 1227-1241.
40. Küpper, H., Parameswaran, A., Leitenmaier, B., Trtílek, M. and Šetlík, I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist 175, 655-674.
41. LaCoste, C., Robinson, B., Brooks, R., Anderson, C., Chiarucci, A. and Leblanc, M. (1999) The phytoremediation potential of thallium-contaminated soils using iberis and biscutella species. International Journal of Phytoremediation 1, 327-338.
42. Leblanc, M., Petit, D., Deram, A., Robinson, B.H. and Brooks, R.R. (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology and the Bulletin of the Society of Economic Geologists 94, 109-113.
43. Li, H., Chen, Y., Long, J., Li, X., Jiang, D., Zhang, P., Qi, J.,Huang, X., Liu, J., Xu, R. and Gong, J. (2017) Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338, 296-305.
44. Lin, L., Zhou, W. H., Dai, H. X., Cao, F. B., Zhang G. P. and Wu, F. B. (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials 235-236, 343-351.
45. Lin, T. S., and Nriagu, J. (2011). Revised Hydrolysis Constants for Thallium(I) and Thallium(III) and the Environmental Implications. Journal of the Air and Waste Management Association 48, 151-156.
46. Lin, T. S., and Nriagu, J. O. (1998). Thallium in the environment (pp. 31-44). New York: Wiley.
47. Liu, J., Lippold, H., Wang, J., Lippmann-Pipke, J., and Chen, Y. (2011). Sorption of thallium(I) onto geological materials: influence of pH and humic matter. Chemosphere 82, 866-871.
48. Liu, J., Wang, J., Chen, Y., Qi, J., Lippold, H., &Wang, C. (2010). Thallium distribution in sediments from the Pearl River Basin, China. Clean : Soil, Air, Water 38, 909-915.
49. Liu, W. J., Zhu, Y. G., and F. A., Smith (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil 277, 127-138.
50. Martin, L. A., Wissocq, A., Benedetti, M. F., and Latrille, C. (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta 230, 1-16.
51. McKeague, J. A. and Day, J. H. (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46, 13–22.
52. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199-216.
53. Nriagu, J. O. (Ed.). (1998) Tallium in the environment. Vol 29. New York: John Wiley & Sons.
54. Palta, J. P. (1990) Leaf chlorophyll content. Remote Sensing Reviews 5, 207-213.
55. Panda, S.K. and Patra, H.K. (2000) Does chromium (III) produce oxidative stress in excised wheat leaves ? Journal of Plant Biology 27:105–110.
56. Pavlíčková, J., Zbíral, J.,Smatanová, M., Habarta, P., Houserová, P. and Kubáň, V. (2006) Uptake of thallium from artificially contaminated soils by kale (Brassica oleracea L. var. acephala) Plant Soil and Environment 52, 544-549.
57. Peacock, C.L. and Moon, E.M. (2012) Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochimica Et Cosmochimica Acta 84, 297-313.
58. Persson, I. (2010) Hydrated metal ions in aqueous solution: How regular are their structures? Pure and Applied Chemistry 82, 1901-1917.
59. Radić, S., Cvjetko, P., Glavaš, K., Roje, V., Pevalek-Kozlina, B., Pavlica, M. (2009) Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry 28:189-196.
60. Raheb, A. and Heidari, A. (2012) Effects of clay mineralogy and physico-chemical properties on potassium availability under soil aquic conditions. Journal of Soil Science and Plant Nutrition 12, 747-761.
61. Ralph, L. and Twiss, M.R. (2002) Comparative toxicity of thallium(i), thallium(iii), and cadmium(ii) to the unicellular alga Chlorella isolated from Lake Erie. Bulletin of Environmental Contamination and Toxicology 68, 261-268.
62. Rao, C. R., Ruiz-Chancho, M. J., Sahuquillo, A., and Lopez-Sanchez, J. F. (2008). Assessment of extractants for the determination of thallium in an accidentally polluted soil. Bulletin of Environmental Contamination and Toxicology 81, 334-338.
63. Renkema, H., Koopmans, A., Hale, B., and Berkelaar, E. (2015) Thallium and potassium uptake kinetics and competition differ between durum wheat and canola. Environmental Science and Pollution Research 22, 2166-2174.
64. Robbins, C. W. and Mayland, H. F. (1993) Calcium, magnesium, and potassium uptake by crested wheatgrass grown on calcareous soils. Communications in Soil Science and Plant Aanlysis 24, 915-926.
65. Rodríguez-Mercado, J. J., Mosqueda-Tapia, G., and Altamirano-Lozano, M. A. (2017) Genotoxicity assessment of human peripheral Lymphocytes induced by thallium(I) and thallium(III). Toxicological & Environmental Chemistry 99, 987-998.
66. Rodríguez-Mercado, J. J., Mosqueda-Tapia, G., and Altamirano-Lozano, M. A. (2017) Genotoxicity assessment of human peripheral Lymphocytes induced by thallium(I) and thallium(III). Toxicological & Environmental Chemistry, 99, 987-998.
67. Sager, M. (1998) Thallium in agriculture practice. In J. O. Nriagu (Ed.), Thallium in the environment 29 (pp. 59–87). New York: Wiley.
68. Sasmaz, M., Akgul, B., Yildirim, D., and Sasmaz, A. (2016). Bioaccumulation of thallium by the wild plants grown in soils of mining area. International Journal of Phytoremediation 18, 1164-1170.
69. Scheckel, K.G., Lombi, E., Rock, S.A. and McLaughlin, M.J. (2004) In vivo synchrotron study of thallium speciation and compartmentation in lberis intermedia. Environmental Science & Technology 38, 5095-5100.
70. Sillen, L.G. and Martell, A.E. (1964) Stability constants of metal–ion complexes. Special publication, vol. 17. Burlington House, London7 The Chemical Society.
71. Sukreeyapongse, O., Holme, P.E., Strobel, B.W., Panichsakpatana, S., Magid, J., Hansen, H.C.B., (2002) pH-dependent release of cadmium, copper, and lead from naturalandsludge-amendedsoils. Journal of Environmental Quality 31,1901-1909.
72. Thomas, G. W., and B. W. Hipp. (1968). Soil factors affecting potassium availability. In The role of potassium in agriculture. V. J. Kilmeret al. (eds). Am. Soc. Agron., Madison, Wis., pp. 269-291.
73. Thomas, G.W. (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. Page, A.L. (ed), pp. 159-165, Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA.
74. Tremel, A., Masson, P., Garraud, H., Donard, O.F.X., Baize, D. and Mench, M. (1997a) Thallium in French agrosystems .2. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution 97, 161-168.
75. Tremel, A., Masson, P., Sterckeman, T., Baize, D. and Mench, M. (1997b) Thallium in French agrosystems .1. Thallium contents in arable soils. Environmental Pollution 95, 293-302.
76. Twidwell LG, Beam CW. (2002) Potential technologies for removing thallium from mine and process wastewater: an abbreviated annotation of literature. European Journal Mineral Processing and Environmental Protection 2, 1-10.
77. Usman, A.R.A., Kuzyakov, Y., Stahr, K., (2008) Sorption, desorption, and immobilization of heavy metals by artificial soil. MSc. thesis, University of Hohenhiem, Stuttgart.
78. Vaněk, A., Chrastný, V., Komárek, M., Penížek, V., Teper, L., Cabala, J., and Drábek, O. (2013) Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration 124, 176-182.
79. Vaněk, A., Komárek, M., Chrastny, V., Běcka, D., Mihaljevic, M., Sebek, O., Panusková, G., Schusterová, Z. (2010) Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils-agro-environmental implications. Journal of Hazardous Materials 182, 303-308.
80. Vaněk, A., Komárek, M., Vokurková, P., Mihaljevic, M., Sebek, O., Panusková, G., Chrastny, G. and Drábek, O. (2011) Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials 191, 170-176.
81. Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A. C., et al. (2015) Thallium speciation and extractability in a thallium- and arsenic rich soil developed from mineralized carbonate rock. Environmental Science and Technology 49,5390-5398.
82. Wang, A.S., Angle, J.S., Chaney, R.L., Delorme, T.A., Reeves, R.D. (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil 281, 325-337.
83. Wang, L., Kubota, M., Higashi, T., and Fujimura, T. (2004) Evaluation of a sequential extraction procedure for the fractionation of thallium in soils and determination of the content by flame atomic absorption spectrometry. Soil Science and Plant Nutrition, 50, 339-347.
84. Wierzbicka, M., Szarek-Lukaszewska, G., and Grodzinska, K. (2004) Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmenta Safety 59, 84-88.
85. Wojtkowiak, T., Karbowska, B., Zembrzuski, W., Siepak, M., and Lukaszewski, Z. (2016) Miocene colored waters: a new significant source of thallium in the environment. Journal of Geochemical Exploration 161,42-48.
86. Wu, Q., Leung, J. Y., Huang, X., Yao, B., Yuan, X., Ma, J., and Guo, S. (2015) Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environmental Science and Pollution Research 22, 11478-11487.
87. Wyszkowska, J., Borowik, A., Kucharski, M., & Kucharski, J. (2013) Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. Journal of Elementology 18, 769-796.
88. Xiao, T., Guha, J., Boyle, D., Liu, C. Q., Zheng, B., Wilson, G. C., Rouleau, A., Chen, J. (2004) Naturally occurring thallium: a hidden geoenvironmental health hazard? Environment International 30, 501-507.
89. Xiao, T., Guha, J., Boyle, D., Liu, C.-Q., and Chen, J. (2004) Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of The Total Environment 318, 223-244.
90. Yang, C., Chen, Y., Peng, P., Li, C., Chang, X., and Xie, C. (2005) Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment 341, 159-172.
91. Zalidis, G., Barbayiarinis, N. and Matsi, T. (1999) Forms and distribution of heavy metals in soils of the Axios delta of northern Greece. Communications in Soil Science and Plant Analysis, 817-827.
92. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., and Zhang, G. (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 159, 84-91.
93. Zhang, H. M., Xu, M. G., Zhang W. J. and He, X. H. (2009) Factors affecting potassium fixation in seven soils under 15-year long-term fertilization. Chinese Science Bulletin 54, 1773-1780.
94. Zhou, Y. and MacKinnon, R. (2004). Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43, 4978–4982.
95. Zitko V. (1975)Toxicity and pollution potential of thallium. Science of the Total Environment 4, 185- 92
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72021-
dc.description.abstract新興汙染物 - 鉈是一種具有極高毒性的金屬元素,通常在自然環境中的濃度極低。由於近年來半導體與光電儀器產業的興起,鉈作為原料被運用於製程,可能導致周圍區域遭受鉈汙染。若被農地中的作物吸收造成糧食汙染,將對人體健康造成巨大威脅。然而目前臺灣缺乏對於鉈的環境管制標準,同時少有研究探討鉈在土壤中的宿命與其生物有效性。為了了解鉈汙染可能造成之前在影響,本研究分別以水耕試驗探討植物的鉈有效性與鉈毒害,以土耕試驗探討不同試驗土壤對植物鉈吸收之影響。試驗皆選用處於三葉齡的台梗九號水稻幼苗作為植物材料,以Tl(I)NO3作為鉈處理的添加物種。水稻幼苗水耕試驗以0.01、0.05、0.1、0.2、0.5、0.7、1.0、2.0 mg L-1為處理濃度,暴露九天後分析其生長情形和植體鉈濃度。結果顯示,水稻幼苗經九天的鉈暴露後其生長勢與生質量受到顯著抑制,抑制程度隨著處理濃度越高而上升,同時葉綠素含量也下降,植體開始呈現萎黃。根部與地上部鉈濃度可以分別在短期間內吸收至高達1953 mg/kg 與633 mg/kg,累積係數ECR與ECS高達約2500與500,顯示了鉈具有高生物有效性。
土耕試驗則添加1、5、10、20、50 mg kg-1於平鎮系、坡堵系、臺南系、鹿港系、和美系、豐樂系、關山系七種供試土壤,以盆栽試驗的方式培植水稻幼苗,結果顯示水稻在土耕系統中的累積係數相比於水耕試驗急遽下降,顯示土壤的存在限制了鉈的吸收。水稻幼苗的鉈吸收量在各土系中不同,顯示鉈有效性的高低受不同土壤特性所影響。對照供試土壤的土壤基本性質,發現主要由土壤pH值、土壤陽離子交換容量、無定型鐵氧化物含量影響植物的鉈吸收。土壤陽離子交換容量本身即為土壤重金屬吸附代表,pH值越高的土系其土壤的pH依賴型電荷量越高,對鉈的吸附能力越強;同理無定型鐵氧化物含量高的土壤在pH值下形成更多pH依賴型電荷,進而增加土壤對鉈的吸附,限制植體的吸收。有鑑於一價鉈離子與鉀離子的離子半徑大小的相近,以富含蛭石的關山系(Ks)與多由高嶺石組成黏粒成分的平鎮系(Pc)兩土壤作為依據,比較其孔隙水中鉈濃度與孔隙水中鉈濃度與水稻鉈吸收情形,發現土壤中所含有的2:1型黏土礦物可能以限制鉀有效性相同的方式影響鉀的移動性。水耕與土耕試驗結果皆顯示,溶液中的鉀/鉈比例上升時,大量的鉀會與鉈競爭植體根部細胞膜的同一傳輸通道,進而抑制植體的鉈吸收。而鉀與鉈的相似性,使得土壤孔隙水中鉈的生物有效性得評估得以參照鉀的修正式,以[Tl]/([Ca]+[Mg])1/2作為修正後的活性比值可以與植體鉈濃度相關性更好的直線關係。而以鉈鉀吸收競爭作為修正的活性比值[Tl]/[K]也有同樣結果,顯示除了受鉈本身的劑量濃度影響外,溶液中其他的陽離子組成也會影響鉈的生物有效性。
zh_TW
dc.description.abstractThallium(Tl) is a highly toxic metal element, which naturally presents in the environment at extremely low concentrations. With the development of semi-conductor and electro-optical industries, Tl has been applied in the production processes, which results in Tl contamination in surrounding areas. After Tl is absorbed by crops in the fields, the Tl-containing foods will pose a huge threat to human health due to the high toxicity of Tl. However, little is known about the fate of Tl in soil and the Tl uptake of plants. To better understand the potential effect of Tl contamination, rice seedlings (Oryza sativa L.) were grown in hydroponic and soil cultivation systems containing Tl(I)NO3 of various concentrations. In hydroponic experiment, Tl concentrations in the nutrition solution were 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 2.0 mg L-1 . After exposure of 9 days, the growth and Tl concentration of rice seedlings were measured. The result of hydroponic experiment showed that the growth and biomass of rice seedlings were inhibited under Tl exposure, and the degree of inhibition increased as the Tl concentration increased. At the same time, the chlorophyll content decreased, and chlorosis of plant tissue appeared. In short period of exposure, Tl concentration in root and shoot of rice went up to 1953 mg/kg and 633 mg/kg at maximum respectively, and enrichment coefficient of root and shoot (ECR and ECS) went up to about 2500 and 500 respectively. Both of the facts show high bioavailability of Tl in rice seedlings.
Pot experiments were carried out with 7 test soils spiked with 1, 5, 10, 20, 50 mg kg-1 of Tl The enrichment coefficient of Tl in rice seedling sharply decreased in pot experiment when compared with hydroponic experiment, which showed that the negative effect of soil on the Tl uptake by plants. The Tl uptake of rice seedlings were significantly different from each test soil, which suggested the variations in Tl availability in different soils. Soil pH, CEC, amorphous iron oxides content and the composition of exchangeable cations were found to be the key factors in determining Tl uptake. CEC is always considered as the ability of adsorbing heavy metal ions. Soils with higher pH made higher pH-dependent charge, which enhanced Tl adsorption capacity. Soils with high amorphous iron oxides in soil tends to form more pH-dependent charge at high pH, which enhanced Tl adsorption capacity and also restricted Tl uptake. In view of the similarity of ionic radii of Tl(I) and K+, we compare the difference between Kuanshan series (vermiculite-abundant soil) and Pinchen series (Kaolinite abundant soil). The difference of Tl concentration in pore water and the Tl uptake of rice seedlings between those two soil may be caused by 2:1 type clay mineral in soil, which may affect Tl mobility in the same mechanism as K+. Both hydroponic and pot experiments showed that the increase of K/Tl ratio in solution causes the reduction of Tl uptake in plant, attributed to the competition of K+ with Tl(I) for the same transporter on root sell membrane. The similarity between Tl(I) and K+ also provide a reference to predict Tl bioavailability with Tl concentration in pore water. The modified activity formula, [Tl]/([Ca]+[Mg])1/2, proved to be better correlated with Tl concentration in rice seedlings. Another modified activity formula, [Tl]/[K], takes K/Tl competition into consideration and also gives a better correlated with Tl concentration in rice seedlings. Besides Tl dosage, the cations composition in soil solution will also effect the bioavailability of Tl.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:19:29Z (GMT). No. of bitstreams: 1
ntu-107-R05623007-1.pdf: 3408058 bytes, checksum: a9f3c97fa7bfe74c096ee254da175aad (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 前人研究 2
1.1 鉈的來源與其汙染 2
1.2 鉈的化學特性 2
1.3 鉈的毒性 4
1.4 鉈的各國管制標準 4
1.5 鉈在環境中的濃度與型態分布 5
1.6 土壤的重金屬有效性 7
1.6.1 土壤pH值 8
1.6.2 陽離子交換容量 8
1.6.3 鐵鋁錳氧化物含量 9
1.6.4 有機質含量 9
1.6.5 黏土礦物 9
第三章 材料與方法 11
3.1 水稻幼苗培育 11
3.1.1 供試水稻品種 11
3.1.2水耕液配製 11
3.1.3 幼苗培育與生長條件 11
3.2 水稻幼苗鉈毒害試驗 – 水耕試驗 12
3.2.1 鉈處理水耕液配製 12
3.2.2水稻幼苗的鉈吸收與其毒害 12
3.2.3 其他陽離子對水稻幼苗鉈吸收與毒害之影響 12
3.3 水稻幼苗鉈毒害試驗 – 土耕盆栽試驗 13
3.3.1 供試土壤來源與分類 13
3.3.2 供試土壤基本性質分析 14
3.3.3 鉈處理土壤的製備 17
3.3.4 土耕盆栽試驗 18
3.4 土壤樣品分析 18
3.4.1 土壤孔隙水之採集與分析 18
3.4.2土壤總鉈含量: 微波輔助王水-氫氟酸消化法 19
3.5植體樣品分析 19
3.5.1 植體總鉈含量與其他元素分析 19
3.5.2 植體葉綠素含量分析 20
3.6 統計分析 20
第四章 結果與討論 22
4.1 水耕試驗中水稻幼苗的鉈吸收與其毒害 22
4.1.1 水耕試驗中鉈處理對水稻幼苗的毒害作用 22
4.1.2 水耕試驗中水稻幼苗的鉈吸收情形 27
4.2水耕試驗中水稻幼苗植體的鉈吸收其他陽離子之影響 31
4.2.1 鉀離子之影響 31
4.2.2 鈣離子與鎂離子之影響 40
4.2.3 水耕系統下陽離子組成種類對鉈吸收之影響 49
4.3 土耕盆栽試驗中水稻幼苗的鉈吸收與其毒害 52
4.3.1 供試土壤特性 52
4.3.2土壤盆栽試驗之鉈處理水稻幼苗的毒害作用 57
4.3.3土壤盆栽試驗之鉈處理水稻幼苗的鉈吸收情形 71
4.3.4土壤盆栽試驗的土壤pH與Eh 78
4.3.5土壤盆栽試驗的土壤孔隙水鉈濃度與鉀對鉈吸收之抑制作用 82
4.3.6 土壤性質對水稻幼苗鉈有效性之影響 88
第五章 結論 96
第六章 參考文獻 97
dc.language.isozh-TW
dc.subject新興汙染物zh_TW
dc.subject鉈zh_TW
dc.subject水稻幼苗zh_TW
dc.subject土壤性質zh_TW
dc.subject生物有效性zh_TW
dc.subjectBioavailabilityen
dc.subjectEmerging contaminantsen
dc.subjectThalliumen
dc.subjectRice seedlingsen
dc.subjectSoil propertiesen
dc.title不同土壤中鉈對水稻幼苗的生長與吸收的影響zh_TW
dc.titleThe growth and thallium uptake of rice seedlings in soilsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄒裕民(Yu-Min Tzou),李達源(Dar-Yuan Lee),蔡呈奇(Cheng-Chi Tsai),莊愷瑋(Kai-Wei Juang)
dc.subject.keyword新興汙染物,鉈,水稻幼苗,土壤性質,生物有效性,zh_TW
dc.subject.keywordEmerging contaminants,Thallium,Rice seedlings,Soil properties,Bioavailability,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201803143
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved