Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72013
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃偉邦(Wei-Pang Huang)
dc.contributor.authorShue-Ying Lauen
dc.contributor.author劉澍瑩zh_TW
dc.date.accessioned2021-06-17T06:19:07Z-
dc.date.available2019-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citationReferences
1. Albert S, et al. (1999) “Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.” EMBO J 18(19):5216-25.
2. Benjamin JJ, et al. (2011) “Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast.” Mol Biol Cell. 22(13):2337-47.
3. Bento CF, et al. (2013) “The role of membrane-trafficking small GTPases in the regulation of autophagy.” J Cell Sci. 1;126(Pt 5):1059-69.
4. Blommaart EF, et al. (1997) “The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes.” Eur J Biochem. 243(1-2):240-6.
5. Burston HE, et al. (2008) “Genome-wide analysis of membrane transport using yeast knockout arrays.” Methods Mol Biol. 457:29-39.
6. Chen W, et al. (2014) “Comprehensive analysis of protein N-glycosylation sites by combining chemical deglycosylation with LC-MS.” J Proteome Res 13(3):1466-73.
7. Cheong H, et al. (2008) “The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae.” Mol Biol Cell. 19(2):668-81.
8. Darsow T, et al. (1997) “A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.” J Cell Biol 138(3):517-29.
9. De Antoni A, et al. (2002) “Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs.” J Biol Chem 277(43):41023-31.
10. Du LL, et al. (2001) “Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p.” Mol Biol Cell. 12(5):1215-26.
11. Dull T, et al. (1998) “A third-generation lentivirus vector with a conditional packaging system.” J Virol. 72(11):8463-71.
12. Feng Y, et al. (2014) “Global analysis of protein structural changes in complex proteomes.” Nat Biotechnol 32(10):1036-44.
13. Fulvio Reggiori, et al. (2005) “The Actin Cytoskeleton Is Required for Selective Types of Autophagy, but Not Nonspecific Autophagy, in the Yeast Saccharomyces cerevisiae” Mol Biol Cell. 16(12): 5843–5856.
14. Gasch AP, et al. (2000) “Genomic expression programs in the response of yeast cells to environmental changes.” Mol Biol Cell. 11(12):4241-57.
15. Geng J, et al. (2008) “Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy.” J Cell Biol 182(1):129-40.
16. Geng J, et al. (2010) “Post-golgi sec proteins are required for autophagy in Saccharomyces cerevisiae.” Mol Biol Cell 21(13):2257-69.
17. Hanada T, et al. (2007) “The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy.” J Biol Chem. 282(52):37298-302.
18. Harding TM, et al. (1995) “Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway.” J Cell Biol. 131(3):591-602.
19. Huang WP, et al. (2014) “Assays for autophagy I: the Cvt pathway and nonselective autophagy.” Methods Mol Biol. 1163:153-64.
20. Huang ZX, et al. (2014) “Novel mechanism coupling cyclic AMP-protein kinase A signaling and golgi trafficking via Gyp1 phosphorylation in polarized growth.” Eukaryot Cell. 13(12):1548-56.
21. Ichimura Y, et al. (2000) “A ubiquitin-like system mediates protein lipidation.” Nature. 408(6811):488-92.
22. Journo D, et al. (2008) “Monitoring autophagy in yeast using FM 4-64 fluorescence.” Methods Enzymol. 451:79-88.
23. Jung G, et al. (1999) “Carboxypeptidase Y: structural basis for protein sorting and catalytic triad.” J Biochem. 126(1):1-6.
24. Kirisako T, et al. (1999) “Formation process of autophagosome is traced with Apg8/Aut7p in yeast.” J Cell Biol 147(2):435-46.
25. Kirisako T, et al. (2000) “The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway.” J Cell Biol 151(2):263-76.
26. Klionsky DJ, et al. (1992) “Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway.” J Cell Biol. 119(2):287-99.
27. Klionsky DJ, et al. (1999) “Vacuolar import of proteins and organelles from the cytoplasm.” Annu Rev Cell Dev Biol.15:1-32.
28. Klionsky DJ (2005) “The molecular machinery of autophagy: unanswered questions.” J Cell Sci 118(Pt 1):7-18
29. Klionsky DJ (2007) “Monitoring autophagy in yeast: the Pho8Delta60 assay.” Methods Mol Biol. 390:363-71.
30. Klionsky DJ (2014) “Citing recent declines in the discovery of new ATG genes, some scientists now suggest that the end of autophagy research may be within sight.” Autophagy 10(5):715-6
31. Kramer MH, et al. (2017) “Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.” Mol Cell.65(4):761-774.e5.
32. Lachmann J, et al. (2012) “The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles.” Mol Biol Cell 23(13):2516-26.
33. Lamb CA, et al. (2013) “The autophagosome: origins unknown, biogenesis complex.” Nat Rev Mol Cell Biol. 14(12):759-74.
34. Levine B, et al. (2004) “Development by self-digestion: molecular mechanisms and biological functions of autophagy.” Dev Cell. 6(4):463-77.
35. Lipatova Z, et al. (2012) “Regulation of selective autophagy onset by a Ypt/Rab GTPase module.” Proc Natl Acad Sci U S A 109(18):6981-6.
36. Lynch-Day MA, et al. (2010) “Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy.” Proc Natl Acad Sci U S A.107(17):7811-6.
37. Mathew R, et al. (2007) “Role of autophagy in cancer.” Nat Rev Cancer. 7(12):961-7.
38. Matsuura A, et al. (1997) “Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae.” Gene. 192(2):245-50.
39. Meléndez A, et al. (2009) “Autophagy in C. elegans.” WormBook. 24:1-26.
40. Mizushima N, et al. (1998) “A protein conjugation system essential for autophagy.” Nature. 395(6700):395-8.
41. Nair U, et al. (2005) “Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast.” J Biol Chem 280(51): 41785-8.
42. Nakatogawa H, et al. (2009) “Dynamics and diversity in autophagy mechanisms: lessons from yeast.” Nat Rev Mol Cell Biol. Jul;10(7):458-67.
43. Nickerson DP, et al. (2012) “Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3.” Traffic 13(10):1411-28.
44. Nixon RA. (2013) “The role of autophagy in neurodegenerative disease.” Nat Med. 19(8):983-97.
45. Noda T, et al. (2008) “The quantitative Pho8Delta60 assay of nonspecific autophagy.” Methods Enzymol. 451:33-42.
46. Novick P (2016) “Regulation of membrane traffic by Rab GEF and GAP cascades.” Small GTPases. 7(4):252-256.
47. Ohashi Y, et al. (2010) “Membrane delivery to the yeast autophagosome from the Golgi-endosomal system.” Mol Biol Cell. 21(22):3998-4008.
48. Puri C, et al. (2013) “Diverse autophagosome membrane sources coalesce in recycling endosomes.” Cell. 154(6):1285-99.
49. Rak A, et al. (2000) “Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins.” EMBO J 19(19):5105-13.
50. Rivera-Molina FE, et al. (2009) “A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway.” Proc Natl Acad Sci U S A. 106(34):14408-13.
51. Romanov J, et al. (2012) “Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation.” EMBO J. 31(22):4304-17.
52. Rybin V, et al. (1996) “GTPase activity of Rab5 acts as a timer for endocytic membrane fusion.” Nature. 383(6597):266-9.
53. Segev N (2001) “Ypt and Rab GTPases: insight into functions through novel interactions.” Curr Opin Cell Biol 13(4):500-11.
54. Suzuki K, et al. (2007) “Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae.” FEBS Lett 581(11):2156-61.
55. Vollmer P, et al. (1999) “Primary structure and biochemical characterization of yeast GTPase-activating proteins with substrate preference for the transport GTPase Ypt7p.” Eur J Biochem 260(1):284-90.
56. Watzke A, et al. (2005) “Chemical biology of protein lipidation: semi-synthesis and structure elucidation of prenylated RabGTPases.” Org Biomol Chem. 3(7):1157-64.
57. Weidberg H, et al. (2011) “Biogenesis and cargo selectivity of autophagosomes.” Annu Rev Biochem 80:125-56.
58. Wild P, et al. (2011) “Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth.” Science. 333(6039):228-33.
59. Yamamoto H, et al. (2012) “Atg9 vesicles are an important membrane source during early steps of autophagosome formation.” J Cell Biol 198(2):219-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72013-
dc.description.abstract自噬作用為一個對維持細胞內物質恆定非常重要的自分解過程,其可協助細胞應對細胞內部養分的缺乏和細胞外部的環境壓力。自噬作用進行時,一部份的胞質由雙層膜構造的自噬體包裹,並與濾泡結合進而分解。很多蛋白質及其複合體參與其過程。前人研究發現內膜運輸機制亦參與調控自噬作用。Ypt/Rab GTP酶蛋白家族 (Ypt/Rab GTPase protein family) 為其中一個調控內膜運輸機制的重要蛋白質複合物。其中Ypt1和Ypt7均參與自噬作用的調控,Ypt1可調控自噬作用起始過程中的Atg1/Atg13複合物之生成,而Ypt7則為自噬體與濾泡結合的必需因子。Ypt/Rab GTP酶蛋白家族的活性由鳥苷酸轉換因子 (guanine-nucleotide exchange factors) 及GTP酶活化蛋白 (GTPase activation proteins) 調節。其中GTP酶活化蛋白Gyp1被認為是細胞中調控Ypt1及Ypt7的重要蛋白。本研究中,我們發現缺乏Gyp1的細胞會出現自噬作用缺陷,且當細胞缺乏Gyp1時,內膜運輸機制會失衡。zh_TW
dc.description.abstractAutophagy is a self-degradation process that is important to sustain cell homeostasis responding to nutrient stresses and extracellular signals. During autophagy, a part of cytoplasm is engulfed by double-membrane autophagosomes, which fuse with the vacuole for degradation. Many protein complexes are involved. Several researches have proved that membrane trafficking pathway is involved in autophagy regulation. The Ypt/Rab GTPase protein family is one of the important protein complex regulating membrane trafficking. Previous studies have shown that Ypt1 and Ypt7 could both regulate autophagy process. Ypt1 regulates the formation of Atg1/Atg13 complex, a requirement of autophagy induction. On the other hand, Ypt7 is the essential factor for fusion between autophagosomes and the vacuole. Activity of Ypt/Rab GTPase proteins are modulated by guanine-nucleotide exchange factors (GEFs) and GTPase activation proteins (GAPs). Gyp1 is the GAP protein of Ypt1 and Ypt7 in yeast. In my study, gyp1D cells showed bulk autophagy and Cvt pathway defect. gyp1D cells also had conventional membrane trafficking defect phenotype.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:19:07Z (GMT). No. of bitstreams: 1
ntu-107-R05B21033-1.pdf: 4005205 bytes, checksum: eeba9e8f31f77e05c54c629cdf988f2e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Contents vi
1 Introduction 1
1.1 Overview of autophagy 1
1.2 Overview of Ypt/Rab GTPase and GAP family proteins 4
2 Materials and Methods 6
2.1 Strains and media 6
2.2 Preparation of whole yeast cell extracts for immunoblotting analysis 6
2.3 CPY secretory analysis 7
2.4 Fluorescence microscopy 7
2.5 Pho8D60 assay 8
3 Results 10
3.1 GYP1 gene deletion cells show non-selective autophagy defect 10
3.2 Cells of a gyp1D strain showed Cvt pathway defect 12
3.3 gyp1D cells show conventional membrane trafficking defect phenotype 13
3.4 Ypt1 affects GFP-Atg8 distribution during autophagy progression 15
3.5 Ypt7 affects GFP-Atg8 distribution during autophagy progression 16
3.6 GFP-Gyp1 puncta observed in wild type cells after nitrogen starvation-induced 17
3.7 Atg1, Atg5 and Atg7 showed GFP signal mislocalization during nitrogen starvation in gyp1D cells 18
4 Disscusion 20
4.1 gyp1D cells display moderate autophagy defect and minor Cvt pathway defect 20
4.2 Over-expression of Ypt1 and Ypt7 differently affect gyp1D phenotype 20
4.3 gyp1D cells may affect the steps of autophagy induction 23
5. Conclusion 25
6 References 26
7. Schemes 34
8. Figures and Tables 38
dc.language.isoen
dc.titleGyp1透過改變內膜運輸機制調控自噬作用之進程zh_TW
dc.titleGyp1 regulates the autophagy pathway via modulating intracellular membrane traffickingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅凱尹(Kai-Yin Lo),董桂書(Kuei-Shu Tung),朱家瑩(Chia-Ying Chu)
dc.subject.keyword細胞自噬,內膜運輸機制,Ypt/Rab GTP?蛋白家族,GTP?活化蛋白,Ypt1,Ypt7,Gyp1,zh_TW
dc.subject.keywordAutophagy,membrane trafficking pathway,Ypt/Rab GTPase protein family,GTPase activation proteins (GAPs),Ypt1,Ypt7,Gyp1,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201804004
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
3.91 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved