Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平(Jyh-Ping Hsu)
dc.contributor.authorTzu-Hui Linen
dc.contributor.author林子暉zh_TW
dc.date.accessioned2021-06-17T06:18:17Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citation1. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A., Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature nanotechnology 2010, 5 (2), 160-165.
2. Venkatesan, B. M.; Bashir, R., Nanopore sensors for nucleic acid analysis. Nature nanotechnology 2011, 6 (10), 615-624.
3. Tsutsui, M.; Hongo, S.; He, Y.; Taniguchi, M.; Gemma, N.; Kawai, T., Single-nanoparticle detection using a low-aspect-ratio pore. ACS nano 2012, 6 (4), 3499-3505.
4. Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C., Slowing down DNA translocation through a nanopore in lithium chloride. Nano letters 2012, 12 (2), 1038-1044.
5. Plesa, C.; Kowalczyk, S. W.; Zinsmeester, R.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Fast translocation of proteins through solid state nanopores. Nano letters 2013, 13 (2), 658-663.
6. Guo, W.; Tian, Y.; Jiang, L., Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Accounts of chemical research 2013, 46 (12), 2834-2846.
7. Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating current rectification and nanoparticle transport through a salt gradient in bipolar nanopores. Small 2015, 11 (35), 4594-4602.
8. Rostovtseva, T.; Bashford, C.; Lev, A.; Pasternak, C., Triton channels are sensitive to divalent cations and protons. The Journal of membrane biology 1994, 141 (1), 83-90.
9. Korchev, Y.; Bashford, C.; Alder, G.; Apel, P. Y.; Edmonds, D.; Lev, A.; Nandi, K.; Zima, A.; Pasternak, C., A novel explanation for fluctuations of ion current through narrow pores. The FASEB journal 1997, 11 (7), 600-608.
10. Sexton, L. T.; Horne, L. P.; Martin, C. R., Developing synthetic conical nanopores for biosensing applications. Molecular BioSystems 2007, 3 (10), 667-685.
11. Martin, J.; Milner, B., Chemistry. Cambridge University Press: 2001.
12. Howorka, S.; Siwy, Z., Nanopore analytics: sensing of single molecules. Chemical Society Reviews 2009, 38 (8), 2360-2384.
13. Tseng, S.; Lin, C.-Y.; Hsu, J.-P.; Yeh, L.-H., Electrophoresis of deformable polyelectrolytes in a nanofluidic channel. Langmuir 2013, 29 (7), 2446-2454.
14. Tseng, S.; Yeh, P.-H.; Hsu, J.-P., Simulation of Polyelectrolyte Electrophoresis: Effects of the Aspect Ratio, Double-Layer Polarization, Effective Charge, and Electroosmotic Flow. Langmuir 2014, 30 (27), 8177-8185.
15. Righetti, P. G., Capillary electrophoresis in analytical biotechnology: a balance of theory and practice. Crc Press: 1995; Vol. 4.
16. Dolník, V., Capillary electrophoresis of proteins 2005–2007. Electrophoresis 2008, 29 (1), 143-156.
17. Kostal, V.; Arriaga, E. A., Recent advances in the analysis of biological particles by capillary electrophoresis. Electrophoresis 2008, 29 (12), 2578-2586.
18. Treffer, R.; Deckert, V., Recent advances in single-molecule sequencing. Current opinion in biotechnology 2010, 21 (1), 4-11.
19. Hsu, J.-P.; Chen, Z.-S., Electrophoresis of a sphere along the axis of a cylindrical pore: effects of double-layer polarization and electroosmotic flow. Langmuir 2007, 23 (11), 6198-6204.
20. Hsu, J.-P.; Chen, Z.-S.; Ku, M.-H.; Yeh, L.-H., Effect of charged boundary on electrophoresis: Sphere in spherical cavity at arbitrary potential and double-layer thickness. Journal of colloid and interface science 2007, 314 (1), 256-263.
21. Yoon, B. J., Electrophoretic motion of spherical particles with a nonuniform charge distribution. Journal of colloid and interface science 1991, 142 (2), 575-581.
22. Kobayashi, M., Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid and polymer science 2008, 286 (8-9), 935-940.
23. Weatherall, E.; Willmott, G. R., Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing. The Journal of Physical Chemistry B 2015, 119 (16), 5328-5335.
24. Kozak, D.; Anderson, W.; Vogel, R.; Chen, S.; Antaw, F.; Trau, M., Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS nano 2012, 6 (8), 6990-6997.
25. Ruckenstein, E.; Chen, J., Kinetically caused saturation in the deposition of cells—effects of saturation at the secondary minimum and of excluded area. Journal of colloid and interface science 1989, 128 (2), 592-601.
26. Keh, H. J.; Lien, L. C., Electrophoresis of a colloidal sphere along the axis of a circular orifice or a circular disk. Journal of fluid mechanics 1991, 224, 305-333.
27. Su, C.-Y.; Hsu, J.-P.; Tseng, S., Diffusiophoresis of a pH-regulated polyelectrolyte in a nanopore of nonuniform cross section. Microfluidics and Nanofluidics 2015, 19 (3), 647-652.
28. Lo, T.-W.; Hsu, C.; Liu, K.-L.; Hsu, J.-P.; Tseng, S., Diffusiophoresis of a charged sphere in a necked nanopore. The Journal of Physical Chemistry C 2013, 117 (37), 19226-19233.
29. Hsu, J.-P.; Ku, M.-H.; Kao, C.-Y., Electrophoresis of a spherical particle along the axis of a cylindrical pore: effect of electroosmotic flow. Journal of colloid and interface science 2004, 276 (1), 248-254.
30. Wei, R.; Gatterdam, V.; Wieneke, R.; Tampé, R.; Rant, U., Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature nanotechnology 2012, 7 (4), 257-263.
31. Breen, E. J.; Hopwood, F. G.; Williams, K. L.; Wilkins, M. R., Automatic poisson peak harvesting for high throughput protein identification. ELECTROPHORESIS: An International Journal 2000, 21 (11), 2243-2251.
32. Hsu, J.-P.; Wang, H.-H., A stochastic analysis of bacterial adhesion. Journal of theoretical biology 1986, 119 (4), 435-444.
33. Jankovics, L., Kinetics of polyacrylamide adsorption on calcium phosphate. Journal of Polymer Science Part A: Polymer Chemistry 1965, 3 (10), 3519-3522.
34. Boughey, M. T.; Duckworth, R. M.; Lips, A.; Smith, A. L., Observation of weak primary minima in the interaction of polystyrene particles with nylon fibres. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1978, 74, 2200-2209.
35. Hsu, J.-P.; Wang, H.-H., Kinetics of bacterial adhesion—A stochastic analysis. Journal of theoretical biology 1987, 124 (4), 405-413.
36. Hsu, J.-P., Stochastic modeling of bacterial adhesion: a two-step mechanism with linear adhesion rate. Journal of theoretical biology 1987, 124 (4), 495-504.
37. Hsu, J.-P., Stochastic modeling of bacterial adhesion: a two-step mechanism with nonlinear adhesion rate. Journal of theoretical biology 1987, 129 (1), 9-15.
38. Hsu, J.-P., A Monte Carlo simulation of bacterial adhesion. Journal of theoretical biology 1987, 126 (1), 7-13.
39. Hsu, J.-P., Transient analysis of bacterial adhesion. Journal of theoretical biology 1987, 126 (4), 449-455.
40. Van Kampen, N. G., Stochastic processes in physics and chemistry. Elsevier: 1992; Vol. 1.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71995-
dc.description.abstract奈米孔道在生物科技上的應用非常廣泛,由於其特殊的電動力學現象,使得奈米粒子、分子或者DNA鹼基對在接近奈米孔道時的電泳行為相當複雜。阻抗脈衝的技術便是奈米孔道的相關應用,目前已廣泛被用於測定粒子的大小、形狀、表面電位等等,以往有許多文章從脈衝訊號的大小與形狀來判斷粒子的各項性質,而本研究從隨機程序的模型切入,透過觀察粒子通過奈米孔道時產生訊號的頻率與間隔,估計其通過奈米孔道中不同位置時之電泳速度。粒子受外加電場驅動後具有電泳速度,在裝置中的各個位置之速度不盡相同,透過卜瓦松過程來描述特定位置截面通過的粒子數量,藉以觀察粒子在不同區域時的速度。但由於粒子在特定位置的數量將影響卜瓦松過程的參數,且此裝置為一多階層卜瓦松過程,其對於時間之機率分配難以描述。本研究利用特殊之運算方式,計算各個位置粒子數量之期望值,進而了解粒子在不同位置速度之關係,藉以觀察粒子之各項性質。zh_TW
dc.description.abstractNanopore research has a various application in biotechnology. Electrophoresis of nanoparticles, molecules, or DNA base pairs around nanopore is rather complicated due to particular electrodynamics. Nanopore resistive pulse sensing has been used to characterize the size, shape or zeta potential of nanoparticles. Much research has been conducted to determine the property of a particle through the shape and size of a pulse. In this study, we use the frequency and interval of pulses to build a stochastic process to estimate the electrophoresis of particles. However, the procedure of nanopore resistive pulse sensing is a multi-step poisson process which includes event-dependent parameter, it is hard to get the probability distribution under such circumstance. We use a special method to calculate the expected value of numbers of particles and therefore to estimate the properties of particles.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:18:17Z (GMT). No. of bitstreams: 1
ntu-107-R05h41012-1.pdf: 1456178 bytes, checksum: dc950ed550b8d3805669c4b79c6b8e69 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝……………………………………………………………………….I
中文摘要……………………………………………………………….II
English Abstract………………………………………………………III
Contents…………………………………………………………………IV
List of Figures…………………………………………………………..VI
Chapter 1 Introduction……………………………………………..... 1
Chapter 2 Modeling………………………………………………....... 4
2.1 Modeling……………………………………………………..... 4
2.2 Constant Transition Intensities Model……………………….... 5
2.3 Available Vacancies Model…………………………………....7
2.4 Electrophoretic Velocities……………………………………9
Chapter 3 Results and Discussion………………………………....11
3.1 Monte-Carlo Simulation…………………………………....11
3.2 Simulation of Constant Transition Intensities Model…………12
3.3 Available Vacancies Model Simulation…………………..13
3.4 Constant Prediction Simulation…………………………….14
Chapter 4 Conclusion…………………………………......................15
Reference………………………………….……………........................17
Appendix…………………………….…………………........................20
Appendix A………………………………………...........................20
Appendix B………………………………………...........................22
Appendix C………………………………………...........................26
Additional work……………………….……………….........................29
dc.language.isoen
dc.subject阻抗脈衝zh_TW
dc.subject多階層卜瓦松過程zh_TW
dc.subjectMulti-step poisson processen
dc.subjectNanopore resistive pulse sensingen
dc.title電阻脈衝感應之隨機程序模型zh_TW
dc.titleA Stochastic Modeling of Nanopore Resistive Pulse Sensingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾琇瑱(Shio-Jenn Tseng),周呈霙(Cheng-Ying Chou),張有義(You-Im Chang),葉禮賢(Li-Hsien Yeh)
dc.subject.keyword阻抗脈衝,多階層卜瓦松過程,zh_TW
dc.subject.keywordNanopore resistive pulse sensing,Multi-step poisson process,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201804053
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved